F(n)是一個關(guān)于自然數(shù)n的命題,若F(k)(k∈N+)真,則F(k+1)真,現(xiàn)已知F(7)不真,則有:①F(8)不真;②F(8)真;③F(6)不真;④F(6)真;⑤F(5)不真;⑥F(5)真.其中真命題是( )
A.③⑤
B.①②
C.④⑥
D.③④
【答案】分析:利用原命題等價于逆否命題可以進行判斷
解答:解:由原命題等價于逆否命題可得:若F(k+1)(k屬于N)不真,則F(k)不真,從而③⑤為真命題,
故選A.
點評:本題主要考查四種命題即命題的等價性,從而將問題巧妙轉(zhuǎn)化.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

5、F(n)是一個關(guān)于自然數(shù)n的命題,若F(k)(k∈N+)真,則F(k+1)真,現(xiàn)已知F(7)不真,則有:①F(8)不真;②F(8)真;③F(6)不真;④F(6)真;⑤F(5)不真;⑥F(5)真.其中真命題是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

F(n)是一個關(guān)于自然數(shù)n的命題,若F(k)真,則F(k+1)真,現(xiàn)已知F(20)不真,那么:①F(21)不真;②F(19)不真;③F(21)真;④F(18)不真;⑤F(18)真.其中正確的結(jié)論為( 。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

F(n)是一個關(guān)于自然數(shù)n的命題,若F(k)(k∈N+)真,則F(k+1)真,現(xiàn)已知F(7)不真,則有:①F(8)不真;②F(8)真;③F(6)不真;④F(6)真;⑤F(5)不真;⑥F(5)真.其中真命題是( 。
A.③⑤B.①②C.④⑥D.③④

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣東省珠海二中高二(下)第一次段考數(shù)學試卷(解析版) 題型:選擇題

F(n)是一個關(guān)于自然數(shù)n的命題,若F(k)(k∈N+)真,則F(k+1)真,現(xiàn)已知F(7)不真,則有:①F(8)不真;②F(8)真;③F(6)不真;④F(6)真;⑤F(5)不真;⑥F(5)真.其中真命題是( )
A.③⑤
B.①②
C.④⑥
D.③④

查看答案和解析>>

同步練習冊答案