精英家教網 > 高中數學 > 題目詳情
已知復數z=a+bi,滿足|z|=
5
,z2的實部為3,且z在復平面內對應的點位于第一象限.
(1)求z、
.
z
和z+2
.
z
;
(2)設z、
.
z
、z+2
.
z
在復平面內對應點分別為A、B、C,試判斷△ABC的形狀,并求△ABC的面積.
(1)由題意可得 a2-b2=3,a2+b2=5,a>0,b>0.
解得
a=2
b=1
,∴z=2+i,
.
z
=2-i,z+2
.
z
=(2+i)+2(2-i)=6-3i.
(2)由(1)可得點A(2,1)、點B(2,-1)、點C(6,-3),∴
BA
=(0,2)、
BC
=(4,-2),
BA
BC
=0-4=-4<0,∴∠ABC為鈍角,故三角形ABC為鈍角三角形.
△ABC中,由于|AB|=2,|AC|=
16+16
=4
2
,|BC|=
16+4
=2
5
,由余弦定理可得 32=4+20-2×2×2
5
×cos∠ABC,
解得cos∠ABC=-
5
5
,∴sin∠ABC=
4
5
5
,∴△ABC的面積為
1
2
|BA|•|BC|•sin∠ABC=8.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知復數z=a+bi(a、b∈R+)(I是虛數單位)是方程x2-4x+5=0的根.復數w=u+3i(u∈R)滿足|w-z|<2
5
,求u的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知復數z=a+bi,滿足|z|=
5
,z2的實部為3,且z在復平面內對應的點位于第一象限.
(1)求z、
.
z
和z+2
.
z
;
(2)設z、
.
z
、z+2
.
z
在復平面內對應點分別為A、B、C,試判斷△ABC的形狀,并求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知復數Z=a+bi(a、b∈R),且滿足
a
1-i
+
b
1-2i
=
5
3+i
,則復數Z在復平面內對應的點位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數學 來源: 題型:

已知復數z=a+bi(a,b為正實數,i是虛數單位)是方程x2-4x+5=0的一個根,復數w=(z-ti)2(t∈R)對應的點在第二象限,則實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知復數Z=a+bi滿足條件|Z|=Z,則已知復數Z為( 。
A、正實數B、0C、非負實數D、純虛數

查看答案和解析>>

同步練習冊答案