已知等比數(shù)列的各項(xiàng)均為正數(shù),且成等差數(shù)列,成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)已知,記,
,求證:
(1);(2)參考解析
解析試題分析:(1)又等比數(shù)列的各項(xiàng)均為正數(shù),且成等差數(shù)列,成等比數(shù)列.
可得到兩個(gè)等式,解方程組可得結(jié)論.
(2)由(1)可得數(shù)列的通項(xiàng),即可計(jì)算,由于是一個(gè)復(fù)合的形式,所以先計(jì)算通項(xiàng)式.即可得到.又由于.即可得到結(jié)論.
設(shè)等比數(shù)列的公比為,依題意可得解得.所以通項(xiàng).
(2)由(1)得.所以.由.所以.所以即等價(jià)于證明..所以
考點(diǎn):1.等差數(shù)列、等比數(shù)列的性質(zhì).2.數(shù)列的求和.3.數(shù)列與不等式的知識(shí)交匯.4.歸納遞推的思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是等差數(shù)列,是各項(xiàng)都為正數(shù)的等比數(shù)列,且,,,
(1)求,的通項(xiàng)公式.(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列{}是等差數(shù)列,數(shù)列{}的前項(xiàng)和滿足,,
且。
(1)求數(shù)列{}和{}的通項(xiàng)公式:
(2)設(shè)為數(shù)列{.}的前項(xiàng)和,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列為等差數(shù)列,且,,數(shù)列的前項(xiàng)和為,且
(1)求數(shù)列,的通項(xiàng)公式;
(2)若,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為單調(diào)遞增的等比數(shù)列,且,,是首項(xiàng)為2,公差為的等差數(shù)列,其前項(xiàng)和為.
(1)求數(shù)列的通項(xiàng)公式;
(2)當(dāng)且僅當(dāng),,成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項(xiàng)和,數(shù)列滿足 .
(1)求數(shù)列的通項(xiàng);
(2)求數(shù)列的通項(xiàng);
(3)若,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的公差大于0,是方程的兩根.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,設(shè).
(1)求證數(shù)列的前n項(xiàng)和;
(2)若對(duì)一切正整數(shù)n恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com