如圖,函數(shù)y=2sin(πx+φ),x∈R,(其中0≤φ≤
π
2
)的圖象與y軸交于點(0,1).設(shè)P是圖象上的最高點,M、N是圖象與x軸的交點,
PM
PN
=
15
4
15
4
分析:由已知中函數(shù)y=2sin(πx+φ),x∈R,(其中0≤φ≤
π
2
)的圖象與y軸交于點(0,1).我們可以計算出φ值,進而得到P,M,N點的坐標,求出向量
PM
,
PN
的坐標后,代入向量數(shù)量積公式,可得
PM
PN
的值.
解答:解:∵函數(shù)y=2sin(πx+φ),x∈R,(其中0≤φ≤
π
2
)的圖象與y軸交于點(0,1).
可得φ=
π
6

則M坐標為(-
1
6
,0),N點坐標為(
5
6
,0),P點坐標為(
1
3
,2)
PM
=(-
1
2
,-2),
PN
=(
1
2
,-2)
PM
PN
=-
1
2
1
2
+(-2)•(-2)=
15
4

故答案為:
15
4
點評:本題考查的知識點是由y=Asin(ωx+φ)的部分圖象確定其解析式,平面向量的數(shù)量積運算,是平面向量與三角函數(shù)圖象的綜合應(yīng)用,求出函數(shù)解析式是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,函數(shù)y=2sin(πx+φ),x∈R,(其中0≤φ≤
π
2
)的圖象與y軸交于點(0,1).
(Ⅰ)求φ的值;
(Ⅱ)設(shè)P是圖象上的最高點,M、N是圖象與x軸的交點,求
PM
PN
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知如圖是函數(shù)y=2sin(ωx+φ)(|φ|<
π
2
)的圖象上的一段,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,函數(shù)y=2sin(πx+φ),x∈R(其中0<φ≤
π
2
)的圖象與y軸交與點(0,1).
(1)求φ的值;
(2)設(shè)P是圖象上的最高點,M,N是圖象與x軸交點,求
PM
PN
夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,函數(shù)y=2sin(πx+φ),x∈R,(其中0≤φ≤
π
2
)的圖象與y軸交于點(0,1).設(shè)P是圖象上的最高點,M、N是圖象與x軸的交點,則
PM
PN
的夾角為
arccos
15
17
arccos
15
17

查看答案和解析>>

同步練習(xí)冊答案