(理)對(duì)于函數(shù)f(x),在使f(x)≥M成立的所有常數(shù)M中,我們把M的最大值稱為函數(shù)f(x)的“下確界”,則函數(shù)f(x)=sin2x-sinx+csc2x-cscx的“下確界”為   
【答案】分析:化簡(jiǎn)函數(shù)的表達(dá)式,然后換元,結(jié)合題意求出函數(shù)的下確界即可.
解答:解:f(x)=sin2x-sinx+csc2x-cscx=sin2x+-(sinx+)=(sinx+2-(sinx+)-2
令t=sinx+ 則 t≥2 或 t≤-2
由題意f(t)=t2-t-2≥min(f(2),f(-2))=0
所以 f(t) 有下界 0,且 0 能夠取到(在sinx=1時(shí)取到)
所以 下確界就是0.
故答案為:0.
點(diǎn)評(píng):本題是中檔題,考查新定義的理解與應(yīng)用,考查換元法的應(yīng)用,正確應(yīng)用定義是解題的關(guān)鍵,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)對(duì)于函數(shù)f(x),在使f(x)≥M成立的所有常數(shù)M中,我們把M的最大值稱為函數(shù)f(x)的“下確界”,則函數(shù)f(x)=sin2x-sinx+csc2x-cscx的“下確界”為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+4x-2,若對(duì)任意x1,x2∈R且x1≠x2,都有f(
x1+x2
2
)≤
f(x1)+f(x2)
2

(Ⅰ)求實(shí)數(shù)a的取值范圍;
(Ⅱ)(理)對(duì)于給定的非零實(shí)數(shù)a,求最小的負(fù)數(shù)M(a),使得x∈[M(a),0]時(shí),-4≤f(x)≤4都成立;
(Ⅲ)(理)在(Ⅱ)的條件下,當(dāng)a為何值時(shí),M(a)最小,并求出M(a)的最小值.
(Ⅱ)(文)求最小的實(shí)數(shù)b,使得x∈[b,1]時(shí),f(x)≥-2都成立;
(Ⅲ)(文)若存在實(shí)數(shù)a,使得x∈[b,1]時(shí),-2≤f(x)≤3b都成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

袋里裝有除編號(hào)不同外沒(méi)有其它區(qū)別的20個(gè)球,其編號(hào)為n(1≤n≤20,n∈N*);對(duì)于函數(shù)f(x)=
1
3
x2-5x+
65
3
,如果滿足f(n)>n,其中n為袋里球的編號(hào)(1≤n≤20,n∈N*),則稱該球“超號(hào)球”,否則為“保號(hào)球”.
(Ⅰ)如果任意取出1球,求該球恰為“超號(hào)球”的球概率;
(Ⅱ)(理)如果同時(shí)任意取出兩個(gè)球,記這兩球中“超號(hào)球”的個(gè)數(shù)為隨機(jī)變量ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年銀川一中一模理)   下列4個(gè)命題:

   ①在△ABC中,∠A>∠B是sinA>sinB的充要條件;

   ②若a>0,b>0,則a3+b3≥3ab2恒成立;

   ③對(duì)于函數(shù)f(x)=x2+mx+n,若f(a)>0,f(b)>0,則f(x)在(a,b)內(nèi)至多有一個(gè)零點(diǎn);

   ④y=f(x-2)的圖象和y=f(2-x)的圖象關(guān)于x=2對(duì)稱。

其中正確命題序號(hào)________________。

查看答案和解析>>

同步練習(xí)冊(cè)答案