|
|
已知橢機變量X服從正態(tài)分布N(4,1),且P(3≤x≤5)=0.6826,則P(X<3)=
|
[ ] |
A. |
0.0912
|
B. |
0.3413
|
C. |
0.3174
|
D. |
0.1587
|
|
|
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知雙曲線的兩條漸近線分別為l1:y=2x,l2:y=-2x.
(1)求雙曲線E的離心率;
(2)如圖,O為坐標(biāo)原點,動直線l分別交直線l1,l2于A,B兩點(A,B分別在第一,四象限),且△OAB的面積恒為8,試探究:是否存在總與直線l有且只有一個公共點的雙曲線E?若存在,求出雙曲線E的方程;若不存在,說明理由.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
如圖,正方形AMDE的邊長為2,B,C分別為AM,MD的中點,在五棱錐P-ABCDE中,F(xiàn)為棱PE的中點,平面ABF與棱PD,PC分別交于點G,H.
(1)求證:AB∥FG;
(2)若PA⊥底面ABCDE,且AF⊥PE,求直線BC與平面ABF所成角的大小,并求線段PH的長.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
若函數(shù)f(x)(x∈R)是周期為4的奇函數(shù),且在[0,2]上的解析式為,則.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
設(shè)F1,F(xiàn)2分別是橢圓E:的左、右焦點,過點F1的直線交橢圓E于A,B兩點,|AF1|=3|BF1|.
(1)若|AB|=4,△ABF2的周長為16,求|AF2|;
(2)若,求橢圓E的離心率.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知點F,A分別是橢圓的左焦點、右頂點,B(0,b)滿足·=0,則橢圓的離心率等于
|
[ ] |
A. |
|
B. |
|
C. |
|
D. |
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知向量a=(sinx,-1),b=(cosx,-),函數(shù)f(x)=(a+b)·a-2.
(Ⅰ)求函數(shù)f(x)的最小正周期T;
(Ⅱ)已知a、b、c分別為△ABC內(nèi)角A、B、C的對邊,其中A為銳角,且f(A)=1,求A,b和△ABC的面積S.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
設(shè)P是△ABC內(nèi)任意一點,S△ABC表示△ABC的面積,,定義f(P)=(λ1,λ2,λ3),若G是△ABC的重心,,則
|
[ ] |
A. |
點Q在△GAB內(nèi)
|
B. |
點Q在△GBC
|
C. |
點Q在△GCA
|
D. |
點Q與點G重合
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知直線l:Ax+By+C=0(A,B不全為0),兩點P1(x1,y1),P2(x2,y2),若(Ax1+By1+C)·(Ax2+By2+C)>0,|Ax1+By1+C|>|Ax2+By2+c|,則
|
[ ] |
A. |
直線l與直線P1P2不相交
|
B. |
直線l與線段P2P1的延長線相交
|
C. |
直線l與線段P1P2的延長線相交
|
D. |
直線l與線段P1P2相交
|
|
|
查看答案和解析>>