(理科)已知二次函數(shù)f(x)=x2+ax+b(a,b∈R)的定義域?yàn)閇-1,1],且|f(x)|的最大值為M.
(Ⅰ)試證明|1+b|≤M;
(Ⅱ)試證明數(shù)學(xué)公式;
(Ⅲ)當(dāng)數(shù)學(xué)公式時(shí),試求出f(x)的解析式.

(Ⅰ)證明:∵M(jìn)≥|f(-1)|=|1-a+b|,M≥|f(1)|=|1+a+b|
∴2M≥|1-a+b|+|1+a+b|≥|(1-a+b)+(1+a+b)|=2|1+b|
∴M≥|1+b|
(Ⅱ)證明:依題意,M≥|f(-1)|,M≥|f(0)|,M≥|f(1)|
又|f(-1)|=|1-a+b|,|f(1)|=|1+a+b|,|f(0)|=|b|
∴4M≥|f(-1)|+|f(0)|+|f(1)|=|1-a+b|+2|b|+|1+a+b|≥|(1-a+b)-2b+(1+a+b)|=2

(Ⅲ)解:依時(shí),,①同理
②+③得:④由①、④得:
當(dāng)時(shí),分別代入②、③得:,因此
分析:(Ⅰ)由題設(shè)條件知二次函數(shù)f(x)=x2+ax+b(a,b∈R)的定義域?yàn)閇-1,1],且|f(x)|的最大值為M,故必有M≥|f(-1)|與M≥|f(1)|,兩式相加再結(jié)合不等式的性質(zhì)即可證明結(jié)論;
(II)由題意M≥|f(-1)|,M≥|f(0)|,M≥|f(1)|,可先得出4M>3M=|f(-1)|+f(0)|+|f(1)|≥2,即可證明出結(jié)論;
(III)當(dāng)時(shí),可得出,,①同理③由這幾個(gè)不等式解出a,b,c的取值范圍,判斷出它們的值,即可求出函數(shù)的解析式
點(diǎn)評(píng):本題考查不等式的證明與函數(shù)最值的應(yīng)用,綜合性較強(qiáng),解答本題關(guān)鍵是理解題意構(gòu)造出不等式,再由不等式的性質(zhì)進(jìn)行變形證明出結(jié)論,本題中前兩個(gè)小題需要先利用最值得出不等式,再由所得的不等式進(jìn)行組合構(gòu)造出可以證明出結(jié)論的形式,此兩題對(duì)觀察能力要求較高,第三小題也是一個(gè)能力型的題,通過最值得出參數(shù)所滿足的不等式,綜合利用這幾個(gè)不等式作出判斷得出參數(shù)的值,利用不等式求值要注意由等價(jià)得出a=b,這是利用不等式求值的基礎(chǔ),本題考查了轉(zhuǎn)化的思想,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科)已知二次函數(shù)f(x)=x2-ax+a(a>0,x∈R),不等式f(x)≤0的解集有且只有一個(gè)元素,設(shè)數(shù)列{an}的前n項(xiàng)和Sn=f(n)(n∈N*)
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
an
3n
,求數(shù)列{bn}的前n項(xiàng)和Tn;
(3)設(shè)各項(xiàng)均不為0的數(shù)列{cn}中,所有滿足cm•cm+1<0的正整數(shù)m的個(gè)數(shù),稱為這個(gè)數(shù)列{cn}的變號(hào)數(shù),若cn=1-
a
an
(n∈N*)
,求數(shù)列{cn}的變號(hào)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科)已知二次函數(shù)f(x)=x2+ax+b(a,b∈R)的定義域?yàn)閇-1,1],且|f(x)|的最大值為M.
(Ⅰ)試證明|1+b|≤M;
(Ⅱ)試證明M≥
1
2
;
(Ⅲ)當(dāng)M=
1
2
時(shí),試求出f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(理科)已知二次函數(shù)f(x)=x2-ax+a(a>0,x∈R),不等式f(x)≤0的解集有且只有一個(gè)元素,設(shè)數(shù)列{an}的前n項(xiàng)和Sn=f(n)(n∈N*)
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)學(xué)公式,求數(shù)列{bn}的前n項(xiàng)和Tn;
(3)設(shè)各項(xiàng)均不為0的數(shù)列{cn}中,所有滿足cm•cm+1<0的正整數(shù)m的個(gè)數(shù),稱為這個(gè)數(shù)列{cn}的變號(hào)數(shù),若數(shù)學(xué)公式,求數(shù)列{cn}的變號(hào)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年湖北省武漢市教科院高三(上)第一次調(diào)考數(shù)學(xué)試卷(文理合卷)(解析版) 題型:解答題

(理科)已知二次函數(shù)f(x)=x2-ax+a(a>0,x∈R),不等式f(x)≤0的解集有且只有一個(gè)元素,設(shè)數(shù)列{an}的前n項(xiàng)和Sn=f(n)(n∈N*)
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè),求數(shù)列{bn}的前n項(xiàng)和Tn;
(3)設(shè)各項(xiàng)均不為0的數(shù)列{cn}中,所有滿足cm•cm+1<0的正整數(shù)m的個(gè)數(shù),稱為這個(gè)數(shù)列{cn}的變號(hào)數(shù),若,求數(shù)列{cn}的變號(hào)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案