對(duì)于給定正數(shù)k,定fk(x)=
f(x)   (f(x)≤k)
k    (f(x)>k)
,設(shè)f(x)=ax2-2ax-a2+5a+2,對(duì)任意x∈R和任意a∈(-∞,0)恒有fk(x)=
f(x)
,則(  )
A.k的最大值為2B.k的最小值為2
C.k的最大值為1D.k的最小值為1
因?yàn)閷?duì)于任意的x∈(-∞,+∞),恒有fk(x)=f(x),
由已知條件可得,k≥f(x)在(-∞,+∞)恒成立
∴k≥f(x)max
∵f(x)=ax2-2ax-a2+5a+2≤2即函數(shù)f(x)的最大值為2
∴k≥2 即k的最小值為2
故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于給定正數(shù)k,定fk(x)=
f(x)   (f(x)≤k)
k    (f(x)>k)
,設(shè)f(x)=ax2-2ax-a2+5a+2,對(duì)任意x∈R和任意a∈(-∞,0)恒有fk(x)=
f(x)
,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年湖北省部分重點(diǎn)中學(xué)聯(lián)考高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

對(duì)于給定正數(shù)k,定fk(x)=,設(shè)f(x)=ax2-2ax-a2+5a+2,對(duì)任意x∈R和任意a∈(-∞,0)恒有,則( )
A.k的最大值為2
B.k的最小值為2
C.k的最大值為1
D.k的最小值為1

查看答案和解析>>

同步練習(xí)冊(cè)答案