已知函數(shù)f(x)=-x3+ax2-x-1在(-∞,+∞)上是單調函數(shù),則實數(shù)a的取值范圍是( 。
A、(-∞,-
3
]∪[
3
,+∞)
B、[-
3
,
3
]
C、(-∞,-
3
)∪(
3
,+∞)
D、(-
3
3
)
分析:由f(x)的解析式求出導函數(shù),導函數(shù)為開口向下的拋物線,因為函數(shù)在R上為單調函數(shù),所以導函數(shù)與x軸沒有交點,即△小于等于0,列出關于a的不等式,求出不等式的解集即可得到實數(shù)a的取值范圍.
解答:解:由f(x)=-x3+ax2-x-1,得到f′(x)=-3x2+2ax-1,
因為函數(shù)在(-∞,+∞)上是單調函數(shù),
所以f′(x)=-3x2+2ax-1≤0在(-∞,+∞)恒成立,
則△=4a2-12≤0?-
3
≤a≤
3
,
所以實數(shù)a的取值范圍是:[-
3
,
3
].
故選B
點評:此題考查學生會利用導函數(shù)的正負確定函數(shù)的單調區(qū)間,掌握函數(shù)恒成立時所取的條件,是一道綜合題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關于x的方程f(x)-a=o有解,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調,求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項和為Sn,則S2010的值為(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案