(2013•東城區(qū)一模)函數(shù)f(x)=sin(x-
π
3
)
的圖象為C,有如下結(jié)論:
①圖象C關(guān)于直線x=
6
對稱;
②圖象C關(guān)于點(
3
,0)
對稱;
③函數(shù)f(x)在區(qū)間[
π
3
,
6
]
內(nèi)是增函數(shù),
其中正確的結(jié)論序號是
①②③
①②③
.(寫出所有正確結(jié)論的序號)
分析:由題意可解出該函數(shù)的所有對稱軸,對稱區(qū)間和單調(diào)遞增區(qū)間,取整數(shù)k的特殊值,比較選項即可得答案.
解答:解:由x-
π
3
=kπ+
π
2
,可得x=kπ+
6
,k∈Z,
當(dāng)k=0時,可得其中一條對稱軸為x=
6
,故①正確;
x-
π
3
=kπ,可得x=kπ+
π
3
,k∈Z,
當(dāng)k=1時,可得其中一個對稱點的橫坐標(biāo)為x=
3
,故②正確;
由2kπ-
π
2
x-
π
3
≤2kπ+
π
2
得2kπ-
π
6
≤x≤2kπ+
6
,k∈Z,
當(dāng)k=0時,可得其中一個單調(diào)遞增區(qū)間為[-
π
6
,
6
],
因為[
π
3
,
6
]
真包含于[-
π
6
,
6
],
所以函數(shù)在[
π
3
,
6
]
上單調(diào)遞增,故③正確.
故答案為:①②③
點評:本題考查命題真假的判斷,涉及三角函數(shù)的對稱性和單調(diào)性,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東城區(qū)一模)設(shè)A是由n個有序?qū)崝?shù)構(gòu)成的一個數(shù)組,記作:A=(a1,a2,…,ai,…,an).其中ai(i=1,2,…,n)稱為數(shù)組A的“元”,S稱為A的下標(biāo).如果數(shù)組S中的每個“元”都是來自 數(shù)組A中不同下標(biāo)的“元”,則稱A=(a1,a2,…,an)為B=(b1,b2,…bn)的子數(shù)組.定義兩個數(shù)組A=(a1,a2,…,an),B=(b1,b2,…,bn)的關(guān)系數(shù)為C(A,B)=a1b1+a2b2+…+anbn
(Ⅰ)若A=(-
1
2
,
1
2
)
,B=(-1,1,2,3),設(shè)S是B的含有兩個“元”的子數(shù)組,求C(A,S)的最大值;
(Ⅱ)若A=(
3
3
,
3
3
,
3
3
)
,B=(0,a,b,c),且a2+b2+c2=1,S為B的含有三個“元”的子數(shù)組,求C(A,S)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東城區(qū)一模)某游戲規(guī)則如下:隨機地往半徑為1的圓內(nèi)投擲飛標(biāo),若飛標(biāo)到圓心的距離大于
1
2
,則成績?yōu)榧案;若飛標(biāo)到圓心的距離小于
1
4
,則成績?yōu)閮?yōu)秀;若飛標(biāo)到圓心的距離大于
1
4
且小于
1
2
,則成績?yōu)榱己茫敲丛谒型稊S到圓內(nèi)的飛標(biāo)中得到成績?yōu)榱己玫母怕蕿椋ā 。?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東城區(qū)一模)已知全集U={1,2,3,4},集合A={1,2},那么集合?UA為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東城區(qū)一模)數(shù)列{an}的各項排成如圖所示的三角形形狀,其中每一行比上一行增加兩項,若an=an(a≠0),則位于第10行的第8列的項等于
a89
a89
,a2013在圖中位于
第45行的第77列
第45行的第77列
.(填第幾行的第幾列)

查看答案和解析>>

同步練習(xí)冊答案