點(diǎn)P是直線(xiàn)2x+y+10=0上的動(dòng)點(diǎn),直線(xiàn)PA、PB分別切圓x2+y2=4于A、B兩點(diǎn),則四邊形PAOB(O為坐標(biāo)原點(diǎn))的面積的最小值=
 
分析:由題意可得,PA=PB,PA⊥OA,PB⊥OB則要求SPAOB=2S△PAO=
1
2
PA•AO=2PA
的最小值,轉(zhuǎn)化為求PA最小值,由于PA2=PO2-4,當(dāng)PO最小時(shí),PA最小,結(jié)合點(diǎn)到直線(xiàn)的距離公式可知當(dāng)PO⊥l時(shí),PO有最小值,由點(diǎn)到直線(xiàn)的距離公式可求
解答:解:由題意可得,PA=PB,PA⊥OA,PB⊥OB
SPAOB=2S△PAO=
1
2
PA•AO=2PA

又∵在Rt△PAO中,由勾股定理可得,PA2=PO2-4,當(dāng)PO最小時(shí),PA最小,此時(shí)所求的面積也最小
點(diǎn)P是直線(xiàn)l:2x+y+10=0上的動(dòng)點(diǎn),
當(dāng)PO⊥l時(shí),PO有最小值d=
10
5
=2
5
,PA=4
所求四邊形PAOB的面積的最小值為8
故答案為:8
點(diǎn)評(píng):本題主要考查了直線(xiàn)與圓的位置關(guān)系中的重要類(lèi)型:相切問(wèn)題的處理方法,解題中要注意對(duì)性質(zhì)的靈活應(yīng)用,體現(xiàn)了轉(zhuǎn)化思想在解題中的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P是直線(xiàn)2x-y+3=0上的一個(gè)動(dòng)點(diǎn),定點(diǎn)M(-1,2),Q是線(xiàn)段PM延長(zhǎng)線(xiàn)上的一點(diǎn),且|PM|=|MQ|,則Q點(diǎn)的軌跡方程是(    )

A.2x+y+1=0                                  B.2x-y-5=0

C.2x-y-1=0                                   D.2x-y+5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:徐匯區(qū)一模 題型:填空題

點(diǎn)P是直線(xiàn)2x+y+10=0上的動(dòng)點(diǎn),直線(xiàn)PA、PB分別切圓x2+y2=4于A、B兩點(diǎn),則四邊形PAOB(O為坐標(biāo)原點(diǎn))的面積的最小值=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年上海市徐匯區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

點(diǎn)P是直線(xiàn)2x+y+10=0上的動(dòng)點(diǎn),直線(xiàn)PA、PB分別切圓x2+y2=4于A、B兩點(diǎn),則四邊形PAOB(O為坐標(biāo)原點(diǎn))的面積的最小值=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年上海市徐匯區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

點(diǎn)P是直線(xiàn)2x+y+10=0上的動(dòng)點(diǎn),直線(xiàn)PA、PB分別切圓x2+y2=4于A、B兩點(diǎn),則四邊形PAOB(O為坐標(biāo)原點(diǎn))的面積的最小值=   

查看答案和解析>>

同步練習(xí)冊(cè)答案