設(shè)f(x)=ax2+bx+2是定義在[1+a,2]上的偶函數(shù),則f(x)的值域是( 。
A、[-10,2]B、[-12,0]C、[-12,2]D、與a,b有關(guān),不能確定
分析:根據(jù)函數(shù)奇偶性的性質(zhì),確定定義域的關(guān)系,然后根據(jù)方程f(-x)=f(x),即可求出函數(shù)的值域.
解答:解:∵f(x)=ax2+bx+2是定義在[1+a,2]上的偶函數(shù),
∴定義域關(guān)于原點(diǎn)對(duì)稱,即1+a+2=0,
∴a=-3.
又f(-x)=f(x),
∴ax2-bx+2=ax2+bx+2,
即-b=b解得b=0,
∴f(x)=ax2+bx+2=-3x2+2,定義域?yàn)閇-2,2],
∴-10≤f(x)≤2,
故函數(shù)的值域?yàn)閇-10,2],
故選:A.
點(diǎn)評(píng):本題主要考查函數(shù)奇偶性的應(yīng)用,根據(jù)函數(shù)奇偶性的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

13、設(shè)f(x)=ax2+bx+c(a≠0),對(duì)于任意-1≤x≤1,有f(x)|≤1;求證|f(2)|≤7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于函數(shù)f(x),其定義域?yàn)镈,若任取x1、x2∈D,且x1≠x2,若f(
x1+x2
2
)>
1
2
[f(x1)+f(x2)],則稱f(x)為定義域上的凸函數(shù).
(1)設(shè)f(x)=ax2(a>0),試判斷f(x)是否為其定義域上的凸函數(shù),并說明原因;
(2)若函數(shù)f(x)=㏒ax(a>0,且a≠1)為其定義域上的凸函數(shù),試求出實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=ax2+x-a,g(x)=2ax+5-3a
(1)若f(x)在x∈[0,1]上的最大值是
54
,求a的值;
(2)若對(duì)于任意x1∈[0,1],總存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范圍;
(3)若f(x)=g(x)在x∈[0,1]上有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于給定正數(shù)k,定fk(x)=
f(x)   (f(x)≤k)
k    (f(x)>k)
,設(shè)f(x)=ax2-2ax-a2+5a+2,對(duì)任意x∈R和任意a∈(-∞,0)恒有fk(x)=
f(x)
,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•閔行區(qū)二模)設(shè)f(x)=ax2+bx,且1≤f(-1)≤2,2≤f(1)≤4,則f(2)的最大值為
14
14

查看答案和解析>>

同步練習(xí)冊(cè)答案