【題目】已知定點S( -2,0) ,T(2,0),動點P為平面上一個動點,且直線SP、TP的斜率之積為.
(1)求動點P的軌跡E的方程;
(2)設(shè)點B為軌跡E與y軸正半軸的交點,是否存在直線l,使得l交軌跡E于M,N兩點,且F(1,0)恰是△BMN的垂心?若存在,求l的方程;若不存在,說明理由.
【答案】(1);(2)存在,.
【解析】
(1)設(shè),由結(jié)合兩點間斜率計算公式,整理化簡即可;
(2)根據(jù)題意,設(shè)直線的方程為,,因為,所以,結(jié)合直線和橢圓聯(lián)立的方程組,求出的值,根據(jù)題意,確定出即可得出結(jié)果.
(1)設(shè),由已知有,
整理得動點P的軌跡E的方程為
(2)由(1)知,的方程為,所以
又,所以直線的斜率,
假設(shè)存在直線,使得是的垂心,則.
設(shè)的斜率為,則,所以.
設(shè)的方程為,.
由,得,
由,得,
.
因為,所以,因為,
所以,
即,
整理得,
所以,
整理得,解得或,
當(dāng)時,直線過點,不能構(gòu)成三角形,舍去;
當(dāng)時,滿足,
所以存在直線:,使得是的垂心.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用數(shù)學(xué)歸納法證明:
(1);
(2);
(3)設(shè),證明:;
(4)是13的倍數(shù);
(5),證明能被整除.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某航運公司用300萬元買回客船一艘,此船投入營運后,毎月需開支燃油費、維修費、員工工資,已知每月燃油費7000元,第個月的維修費和工資支出為元.
(1)設(shè)月平均消耗為元,求與(月)的函數(shù)關(guān)系;
(2)投入營運第幾個月,成本最低?(月平均消耗最。
(3)若第一年純收入50萬元(已扣除消耗),以后每年純收入以5%遞減,則多少年后可收回成本?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn,且Sn=n﹣5an﹣85,n∈N*
(1)證明:{an﹣1}是等比數(shù)列;
(2)求數(shù)列{Sn}的通項公式.請指出n為何值時,Sn取得最小值,并說明理由?(參考數(shù)據(jù)15=﹣14.85)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點為平面直角坐標(biāo)系的坐標(biāo)原點,焦點為圓的圓心.經(jīng)過點的直線交拋物線于兩點,交圓于兩點,在第一象限,在第四象限.
(1)求拋物線的方程;
(2)是否存在直線使是與的等差中項?若存在,求直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校舉行了全體學(xué)生的一分鐘跳繩比賽,為了了解學(xué)生的體質(zhì),隨機抽取了100名學(xué)生,其跳繩個數(shù)的頻數(shù)分布表如下:
一分鐘跳繩個數(shù) | |||||||
頻數(shù) | 6 | 12 | 18 | 30 | 16 | 10 | 8 |
(1)若將抽取的100名學(xué)生一分鐘跳繩個數(shù)作為一個樣本,請將這100名學(xué)生一分鐘跳繩個數(shù)的頻率分布直方圖補充完整(只畫圖,不需要寫出計算過程);
(2)若該校共有3000名學(xué)生,所有學(xué)生的一分鐘跳繩個數(shù)X近似服從正態(tài)分布,其中為樣本平均數(shù)的估計值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表).利用所得正態(tài)分布模型,解決以下問題:
①估計該校一分鐘跳繩個數(shù)超過165個的人數(shù)(結(jié)果四舍五入到整數(shù));
②若在該校所有學(xué)生中任意抽取4人,設(shè)一分鐘跳繩個數(shù)超過180個的人數(shù)為,求隨機變量的分布列、期望與方差./span>
附:若隨機變量Z服從正態(tài)分布,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,邊,,分別是角,,的對邊,已知且,.
(1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求的內(nèi)切圓方程;
(2)為內(nèi)切圓上任意一點,求的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線E:y2=2px(p>0)的焦點為F,以F為圓心,3p為半徑的圓交拋物線E于P,Q兩點,以線段PF為直徑的圓經(jīng)過點(0,﹣1),則點F到直線PQ的距離為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com