【題目】已知 ,且
(1)求cos2θ與 的值;
(2)若 ,求的值.

【答案】
(1)解:cos2θ=cos2θ﹣sin2θ= = = =

= = =3


(2)解:由 ,且

∴sinθ= ,cosθ=

,

展開:5cosθcosΦ+5sinθsinΦ=3 cosΦ,

化為: cosΦ+5× ×sinΦ=3 cosΦ,

∴2cosΦ+sinΦ=3cosΦ,

∴tanΦ=1,

∴Φ=


【解析】(1)利用倍角公式與“弦化切”可得cos2θ= , = ;(2)由 ,且 .可得sinθ= ,cosθ= .根據(jù) ,展開:5cosθcosΦ+5sinθsinΦ=3 cosΦ,代入化簡(jiǎn)即可得出.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解兩角和與差的正切公式的相關(guān)知識(shí),掌握兩角和與差的正切公式:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中以O(shè)為極點(diǎn),x軸正半軸為極軸建立坐標(biāo)系.圓C1 , 直線C2的極坐標(biāo)方程分別為ρ=4sinθ,ρcos( )=2
(1)求C1與C2交點(diǎn)的極坐標(biāo);
(2)設(shè)P為C1的圓心,Q為C1與C2交點(diǎn)連線的中點(diǎn),已知直線PQ的參數(shù)方程為 (t∈R為參數(shù)),求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四棱錐中,底面為菱形,且直線又棱 的中點(diǎn),

(Ⅰ) 求證:直線;

(Ⅱ) 求直線與平面的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】幾位同學(xué)在研究函數(shù) 時(shí),給出了下面幾個(gè)結(jié)論:

的單調(diào)減區(qū)間是,單調(diào)增區(qū)間是;

②若,則一定有;

③函數(shù)的值域?yàn)?/span>;

④若規(guī)定,,則對(duì)任意恒成立.

上述結(jié)論中正確的是____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖像經(jīng)過(guò)點(diǎn) ,且滿足,

(1)求的解析式;

(2)已知,求函數(shù)的最大值和最小值;

函數(shù)的圖像上是否存在這樣的點(diǎn),其橫坐標(biāo)是正整數(shù),縱坐標(biāo)是一個(gè)完全平方數(shù)?如果存在,求出這樣的點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的面積為且與軸、軸分別交于兩點(diǎn).

1)求圓的方程;

(2)若直線與線段相交,求實(shí)數(shù)的取值范圍;

(3)試討論直線與(1)小題所求圓的交點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)loga(ax2x1)(a0a1)

(1) a,求函數(shù)f(x)的值域.

(2) 當(dāng)f(x)在區(qū)間上為增函數(shù)時(shí),a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知以坐標(biāo)原點(diǎn)為圓心的圓與拋物線相交于不同的兩點(diǎn), ,與拋物線的準(zhǔn)線相交于不同的兩點(diǎn), ,且.

(1)求拋物線的方程;

(2)若不經(jīng)過(guò)坐標(biāo)原點(diǎn)的直線與拋物線相交于不同的兩點(diǎn), ,且滿足.證明直線過(guò)定點(diǎn),并求出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各組中的兩個(gè)函數(shù)是同一函數(shù)的有幾組?

(1)y1=,y2=x–5; (2)y1=,y2=

(3)fx)=x,gx)=; (4)fx)=,Fx)=x

A. 0組 B. 1組 C. 2組 D. 組3

查看答案和解析>>

同步練習(xí)冊(cè)答案