給出下列命題:
①關于x的不等式(a-2)x2+(a-2)x+1>0的解集為R的充要條件是2<a<6;
②我們定義非空集合A的真子集的真子集為A的“孫集”,則集合{1,3,5,7,9}的“孫集”有26個.
③已知f(x)=ax2+bx+c(a≠0),若方程f(x)無實數(shù)根,則方程f[f(x)]=x也一定沒有實數(shù)根;
④若{an}成等比數(shù)列,Sn是前n項和,則S4,S8-S4,S12-S8成等比數(shù)列.
其中正確命題的序號是______.
①當a-2=0即a=2時,不等式(a-2)x2+(a-2)x+1>0的解集為R
當a-2≠0是,設一元二次函數(shù)y=(a-2)x2+(a-2)x+1>0的圖象開口向上,且x軸無交點.所以對于一元二次方程(a-2)x2+(a-2)x+1>0必有△=(a-2)2-4(a-2)<0解得:2<a<6
∴關于x的不等式(a-2)x2+(a-2)x+1>0的解集為R的充要條件是2≤a<6.則判斷命題①正確.
②集合{1,3,5,7,9}的“孫集”有:φ,單元數(shù)集5個.2元素集C52=10個,3元素集C53=10個,共26個.則判斷命題②正確.
③f(x)=ax2+bx+c(a≠0),若方程f(x)無實數(shù)根,即ax2+bx+c=0(a≠0)無實根,則可知△<0,則判斷命題③正確.
④若{an}成等比數(shù)列,Sn是前n項和,則Sn,S2n-Sn,S3n-S2n成等比數(shù)列,所以S4,S8-S4,S12-S8成等比數(shù)列,則判斷命題④正確.
故答案為:②③④.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

16、給出下列命題:
①關于x的的不等式(a-2)x2+(a-2)x+1>0的解集為R的充要條件是2<a<6;
②我們定義非空集合A的真子集的真子集為A的“孫集”,則集合{1,3,5,7,9}的“孫集”有26個.
③已知f(x)=ax2+bx+c(a≠0),若方程f(x)無實數(shù)根,則方程f[f(x)]=x也一定沒有實數(shù)根;
④若{an}成等比數(shù)列,Sn是前n項和,則S4,S8-S4,S12-S8成等比數(shù)列.
其中正確命題的序號是
②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x)=3sin(2x+
π
6
),給出下列命題:
①圖象關于原點成中心對稱
②圖象關于直線x=
π
6
對稱
③函數(shù)f(x)的最大值是3
④函數(shù)的一個單調增區(qū)間是[-
π
4
,
π
4
]
其中正確命題的序號為
②③
②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的偶函數(shù)f(x)滿足條件f(x+1)=-f(x),且在[-1,0]上是增函數(shù),給出下列命題,其中正確的是
①④
①④

(1)f(x)的圖象關于直線x=1對稱;
(2)f(2)=f(0);
(3)f(x)在[0,1]上是增函數(shù);
(4)f(x)在[1,2]上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年四川省巴中市通江中學高三(下)4月月考數(shù)學試卷(理科)(解析版) 題型:填空題

給出下列命題:
①關于x的不等式(a-2)x2+(a-2)x+1>0的解集為R的充要條件是2<a<6;
②我們定義非空集合A的真子集的真子集為A的“孫集”,則集合{1,3,5,7,9}的“孫集”有26個.
③已知f(x)=ax2+bx+c(a≠0),若方程f(x)無實數(shù)根,則方程f[f(x)]=x也一定沒有實數(shù)根;
④若{an}成等比數(shù)列,Sn是前n項和,則S4,S8-S4,S12-S8成等比數(shù)列.
其中正確命題的序號是   

查看答案和解析>>

同步練習冊答案