精英家教網(wǎng)如圖所示,正三棱柱ABC-A1B1C1的所有棱的長度都為4,點D是B1C1的中點,則異面直線AB1與A1D所成的角是
 
(結果用反三角函數(shù)值表示).
分析:利用兩個向量數(shù)量積的定義求得
AB1
A1D
,由又 
AB1
A1D
=(
AB
+
BB1
)•(
AB
+
1
2
BC
)求得
AB1
A1D
,進而可得cos<
AB1
,
A1D
>=
1
4
,最后求出異面直線AB1與BC1所成的角即可.
解答:解:
AB1
A1D
=4
2
×2
3
cos<
AB1
,
A1D
>=8
6
cos<
AB1
,
A1D
>.
又 
AB1
A1D
=(
AB
+
BB1
)•(
AB
+
1
2
BC
)=12
故有 8
6
cos<
AB1
,
A1D
>=12,
∴cos<
AB1
,
A1D
>=
6
4

∴<
AB1
,
A1D
>=arccos
6
4
,
故異面直線AB1與A1D所成的角是 arccos
6
4
,
故答案為:arccos
6
4
點評:本題考查異面直線所成的角的定義和求法,體現(xiàn)了轉化的數(shù)學思想,求出cos<
AB1
,
A1D
>的值,是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖所示,正三棱柱ABC-A1B1C1的底面邊長是2,側棱長是
3
,D是AC的中點.
(Ⅰ)求證:B1C∥平面A1BD;
(Ⅱ)求二面角A1-BD-A的大;
(Ⅲ)求點A到平面A1BD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年唐山一中調研二) 如圖所示,正三棱柱的底面邊長為a,點M在BC上,是以點M為直角頂點的等腰直角三角形。

   (Ⅰ)求證:點M為邊BC的中點;

   (Ⅱ)求點C到平面的距離;

   (Ⅲ)求二面角的大小。

 

查看答案和解析>>

科目:高中數(shù)學 來源:同步題 題型:證明題

如圖所示,正三棱柱ABC-A1B1C1的棱長均為a,D、E分別為C1C與AB的中點,A1B交AB1于G。

(1)求證:A1B⊥AD;
(2)求證:CE∥平面AB1D。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省雅安中學高二(下)4月月考數(shù)學試卷(理科)(解析版) 題型:解答題

如圖所示,正三棱柱ABC-A1B1C1的底面邊長是2,側棱長是,D是AC的中點.
(Ⅰ)求證:B1C∥平面A1BD;
(Ⅱ)求二面角A1-BD-A的大;
(Ⅲ)求點A到平面A1BD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省宜賓市高三(上)調研數(shù)學試卷(理科)(解析版) 題型:解答題

如圖所示,正三棱柱ABC-A1B1C1的底面邊長是2,側棱長是,D是AC的中點.
(Ⅰ)求證:B1C∥平面A1BD;
(Ⅱ)求二面角A1-BD-A的大;
(Ⅲ)求點A到平面A1BD的距離.

查看答案和解析>>

同步練習冊答案