(本題滿分14分) 本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8分.
(理)某種型號(hào)汽車四個(gè)輪胎半徑相同,均為,同側(cè)前后兩輪胎之間的距離(指輪胎中心之間距離)為 (假定四個(gè)輪胎中心構(gòu)成一個(gè)矩形). 當(dāng)該型號(hào)汽車開上一段上坡路(如圖(1)所示,其中()),且前輪已在段上時(shí),后輪中心在位置;若前輪中心到達(dá)處時(shí),后輪中心在處(假定該汽車能順利駛上該上坡路). 設(shè)前輪中心在和處時(shí)與地面的接觸點(diǎn)分別為和,且,. (其它因素忽略不計(jì))
(1)如圖(2)所示,和的延長線交于點(diǎn),
求證:(cm);
(2)當(dāng)=時(shí),后輪中心從處移動(dòng)到處實(shí)際移動(dòng)了多少厘米? (精確到1cm)
(1)由OE//BC,OH//AB,得∠EOH=,
過點(diǎn)B作BM⊥OE,BN⊥OH,則RtOMBRtONB,從而∠BOM=.
在RtOMB中,由BM=40得OM=40cot,從而,OE=OM+ME=OM+BS=.
(2)98cm。
解析試題分析:(1) 由OE//BC,OH//AB,得∠EOH=, 2分
過點(diǎn)B作BM⊥OE,BN⊥OH,則
RtOMBRtONB,從而
∠BOM=. 4分
在RtOMB中,由BM=40得OM=40cot,從而,OE=OM+ME=OM+BS=. 6分
(2)由(1)結(jié)論得OE=.
設(shè)OH=x,OF=y,
在OHG中,由余弦定理得,
2802=x2+(+100)2-2x(+100)cos1500 ,
解得x118.8cm. 9分
在OEF中,由余弦定理得,
2802=y2+()2-2y()cos1500 ,
解得y216.5cm. 12分
所以,F(xiàn)H=y-x98cm,
即后輪中心從F處移動(dòng)到H處實(shí)際移動(dòng)了約98cm. 14分
考點(diǎn):正弦定理;余弦定理;解三角形的實(shí)際應(yīng)用。
點(diǎn)評(píng):在解應(yīng)用題時(shí),我們要分析題意,分清已知與所求,再根據(jù)題意正確畫出示意圖,通過這一步可將實(shí)際問題轉(zhuǎn)化為可用數(shù)學(xué)方法解決的問題。解題中,要注意正、余弦定理的靈活應(yīng)用。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
在中,內(nèi)角A、B、C的對(duì)邊分別是、b、c,已知,且的夾角為。
(Ⅰ)求內(nèi)角C的大;
(Ⅱ)已知,三角形的面積,求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)設(shè)銳角△ABC的三內(nèi)角A,B,C的對(duì)邊分別為 A,b,c,已知向量,,且∥.
(1) 求角A的大;
(2) 若,,且△ABC的面積小于,求角B的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(1)設(shè)的內(nèi)角,且為鈍角,求的最小值;
(2)設(shè)是銳角的內(nèi)角,且求的三個(gè)內(nèi)角的大小和AC邊的長。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)f(x)=" cos(" 2x+)+sin2x.
(Ⅰ)求函數(shù)f(x)的最小正周期和值域;
(Ⅱ)在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,滿足
2·=, 求△ABC的面積S.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com