【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),解不等式;

(Ⅱ)若的圖象與x軸圍成圖形的面積大于6,求實(shí)數(shù)a的取值范圍.

【答案】(Ⅰ);(Ⅱ)

【解析】

(Ⅰ)去絕對(duì)值,然后得到,或,或,解不等式組即可;

(Ⅱ)時(shí),,然后分,兩種情況求出圍成圖形的面積即可.

解:(Ⅰ)當(dāng)時(shí),

所以原不等式等價(jià)于:①或②或③.

解①得:;解②得;解③得.

綜上可知,不等式的解集為.

(Ⅱ)因?yàn)?/span>,故

由函數(shù)的單調(diào)性可知,當(dāng)時(shí),,設(shè),

當(dāng)時(shí),由,得的圖像與x軸一個(gè)交點(diǎn)為.

當(dāng)時(shí),又,設(shè)點(diǎn),

①若

,設(shè)點(diǎn),

此時(shí)的圖象與x軸另一個(gè)交點(diǎn)為,

的圖象與x軸周成圖形為凹四邊形AMNB,其面積為

,

因?yàn)?/span>,所以,不滿足條件.

②若,由,得,設(shè)點(diǎn),

的圖象與x軸圍成圖形為三角形AMC,其面積為

,

由已知得,又,所以,

綜上,實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的內(nèi)角A,BC的對(duì)邊分別為ab,c,,

(1)求角A的大小;

(2)若a=3,求△ABC的周長(zhǎng)L的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了解中學(xué)生的課外閱讀時(shí)間,決定在該中學(xué)的1200名男生和800名女生中按分層抽樣的方法抽取20名學(xué)生,對(duì)他們的課外閱讀時(shí)間進(jìn)行問卷調(diào)查.現(xiàn)在按課外閱讀時(shí)間的情況將學(xué)生分成三類:類(不參加課外閱讀),類(參加課外閱讀,但平均每周參加課外閱讀的時(shí)間不超過3小時(shí)),類(參加課外閱讀,且平均每周參加課外閱讀的時(shí)間超過3小時(shí)).調(diào)查結(jié)果如下表:

男生

5

3

女生

3

3

1)求出表中,的值;

2)根據(jù)表中的統(tǒng)計(jì)數(shù)據(jù),完成下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為參加課外閱讀與否與性別有關(guān);

男生

女生

總計(jì)

不參加課外閱讀

參加課外閱讀

總計(jì)

PKk0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小王想在某市一住宅小區(qū)買套新房,據(jù)了解,該小區(qū)有若干棟互相平行的平頂樓房,每棟樓房有15層,每層樓高為3米,頂樓有1米高的隔熱層,兩樓之間相距60.小王不想買最前面和最后面的樓房,但希望所買樓層全年每天正午都能曬到太陽(yáng).為此,小王查找了有關(guān)地理資料,獲得如下一些信息:①該市的緯度(地面一點(diǎn)所在球半徑與赤道平面所成的角)為北緯;②正午的太陽(yáng)直射北回歸線(太陽(yáng)光線與赤道平面所成的角為)時(shí),物體的影子最短,直射南回歸線(太陽(yáng)光線與赤道平面所成的角為)時(shí),物體的影子最長(zhǎng),那么小王買房的最低樓層應(yīng)為(

A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

2)若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)求曲線的普通方程和直線的直角坐標(biāo)方程;

2)若射線的極坐標(biāo)方程為.設(shè)相交于點(diǎn),相交于點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)求曲線的普通方程和直線的直角坐標(biāo)方程;

2)若射線的極坐標(biāo)方程為.設(shè)相交于點(diǎn),相交于點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點(diǎn)為,焦點(diǎn).

1)求拋物線的方程;

2)過作直線交拋物線于兩點(diǎn).若直線、分別交直線兩點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求函數(shù)的最小值;

2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

3)當(dāng)時(shí),設(shè)函數(shù),若存在區(qū)間,使得函數(shù)上的值域?yàn)?/span>,求實(shí)數(shù)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案