【題目】已知等差數(shù)列{an}滿足:a1=2,且a1 , a2 , a5成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記Sn為數(shù)列{an}的前n項(xiàng)和,是否存在正整數(shù)n,使得Sn>60n+800?若存在,求n的最小值;若不存在,說明理由.
【答案】
(1)解:設(shè)數(shù)列{an}的公差為d,依題意,2,2+d,2+4d成比數(shù)列,故有(2+d)2=2(2+4d),
化簡得d2﹣4d=0,解得d=0或4,
當(dāng)d=0時(shí),an=2,
當(dāng)d=4時(shí),an=2+(n﹣1)4=4n﹣2.
(2)解:當(dāng)an=2時(shí),Sn=2n,顯然2n<60n+800,
此時(shí)不存在正整數(shù)n,使得Sn>60n+800成立,
當(dāng)an=4n﹣2時(shí),Sn= =2n2,
令2n2>60n+800,即n2﹣30n﹣400>0,
解得n>40,或n<﹣10(舍去),
此時(shí)存在正整數(shù)n,使得Sn>60n+800成立,n的最小值為41,
綜上,當(dāng)an=2時(shí),不存在滿足題意的正整數(shù)n,
當(dāng)an=4n﹣2時(shí),存在滿足題意的正整數(shù)n,最小值為41
【解析】(1)設(shè)出數(shù)列的公差,利用等比中項(xiàng)的性質(zhì)建立等式求得d,則數(shù)列的通項(xiàng)公式可得.(2)利用(1)中數(shù)列的通項(xiàng)公式,表示出Sn根據(jù)Sn>60n+800,解不等式根據(jù)不等式的解集來判斷.
【考點(diǎn)精析】掌握數(shù)列的前n項(xiàng)和和等差數(shù)列的性質(zhì)是解答本題的根本,需要知道數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;在等差數(shù)列{an}中,從第2項(xiàng)起,每一項(xiàng)是它相鄰二項(xiàng)的等差中項(xiàng);相隔等距離的項(xiàng)組成的數(shù)列是等差數(shù)列.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知首項(xiàng)是1的兩個(gè)數(shù)列{an},{bn}(bn≠0,n∈N*)滿足anbn+1﹣an+1bn+2bn+1bn=0.
(1)令cn= ,求數(shù)列{cn}的通項(xiàng)公式;
(2)若bn=3n﹣1 , 求數(shù)列{an}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為坐標(biāo)原點(diǎn),橢圓C1: + =1(a>b>0)的左、右焦點(diǎn)分別為F1 , F2 , 離心率為e1;雙曲線C2: ﹣ =1的左、右焦點(diǎn)分別為F3 , F4 , 離心率為e2 , 已知e1e2= ,且|F2F4|= ﹣1.
(1)求C1、C2的方程;
(2)過F1作C1的不垂直于y軸的弦AB,M為AB的中點(diǎn),當(dāng)直線OM與C2交于P,Q兩點(diǎn)時(shí),求四邊形APBQ面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)= (|x﹣a2|+|x﹣2a2|﹣3a2),若x∈R,f(x﹣1)≤f(x),則實(shí)數(shù)a的取值范圍為( )
A.[﹣ , ]
B.[﹣ , ]
C.[﹣ , ]
D.[﹣ , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), ,在處的切線方程為.
(1)求, ;
(2)若,證明: .
【答案】(1), ;(2)見解析
【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于 的方程組,解出即可;
(2)由(1)可知, ,
由,可得,令, 利用導(dǎo)數(shù)研究其單調(diào)性可得
,
從而證明.
試題解析:((1)由題意,所以,
又,所以,
若,則,與矛盾,故, .
(2)由(1)可知, ,
由,可得,
令,
,
令
當(dāng)時(shí), , 單調(diào)遞減,且;
當(dāng)時(shí), , 單調(diào)遞增;且,
所以在上當(dāng)單調(diào)遞減,在上單調(diào)遞增,且,
故,
故.
【點(diǎn)睛】本題考查利用函數(shù)的切線求參數(shù)的方法,以及利用導(dǎo)數(shù)證明不等式的方法,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.
【題型】解答題
【結(jié)束】
22
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(, 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,若直線與曲線相切;
(1)求曲線的極坐標(biāo)方程;
(2)在曲線上取兩點(diǎn), 與原點(diǎn)構(gòu)成,且滿足,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的函數(shù),如果存在常數(shù),對區(qū)間的任意劃分:,和式恒成立,則稱為上的“絕對差有界函數(shù)”,注:.
(1)求證:函數(shù)在上是“絕對差有界函數(shù)”;
(2)記集合存在常數(shù),對任意的,有成立.
求證:集合中的任意函數(shù)為“絕對差有界函數(shù)”;
(3)求證:函數(shù)不是上的“絕對差有界函數(shù)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】計(jì)劃在某水庫建一座至多安裝3臺發(fā)電機(jī)的水電站,過去50年的水文資料顯示,水庫年入流量X(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和.單位:億立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年,將年入流量在以上三段的頻率作為相應(yīng)段的概率,假設(shè)各年的年入流量相互獨(dú)立.
(1)求未來4年中,至多有1年的年入流量超過120的概率;
(2)水電站希望安裝的發(fā)電機(jī)盡可能運(yùn)行,但每年發(fā)電機(jī)最多可運(yùn)行臺數(shù)受年入流量X限制,并有如下關(guān)系:
年入流量X | 40<X<80 | 80≤X≤120 | X>120 |
發(fā)電機(jī)最多可運(yùn)行臺數(shù) | 1 | 2 | 3 |
若某臺發(fā)電機(jī)運(yùn)行,則該臺年利潤為5000萬元,若某臺發(fā)電機(jī)未運(yùn)行,則該臺年虧損800萬元,欲使水電站年總利潤的均值達(dá)到最大,應(yīng)安裝發(fā)電機(jī)多少臺?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)p(1,m)在拋物線上,F為焦點(diǎn),且.
(1)求拋物線C的方程;
(2)過點(diǎn)T(4,0)的直線交拋物線C于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是
A. 先把高三年級的2000名學(xué)生編號:1到2000,再從編號為1到50的50名學(xué)生中隨機(jī)抽取1名學(xué)生,其編號為,然后抽取編號為的學(xué)生,這樣的抽樣方法是分層抽樣法
B. 線性回歸直線不一定過樣本中心點(diǎn)
C. 若兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的值越接近于1
D. 若一組數(shù)據(jù)1、、3的平均數(shù)是2,則該組數(shù)據(jù)的方差是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com