已知曲線過點P(1,3),且在點P處的切線
恰好與直線垂直.求 (Ⅰ) 常數(shù)的值; (Ⅱ)的單調(diào)區(qū)間.

(Ⅰ) .  
(Ⅱ)的單調(diào)區(qū)間為,在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù).

解析試題分析:(Ⅰ)據(jù)題意,所以 

又曲線在點P處的切線的斜率為, ∴
,即 解得.  
(Ⅱ). ∴當時,;當時,
.
的單調(diào)區(qū)間為,在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù).
考點:本題主要考查導(dǎo)數(shù)的幾何意義,直線垂直,研究函數(shù)的單調(diào)性。
點評:典型題,本題屬于導(dǎo)數(shù)應(yīng)用中的基本問題,(2)通過研究導(dǎo)數(shù)的正負取值區(qū)間,明確了函數(shù)的單調(diào)性。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),且。
(1)若函數(shù)處的切線與軸垂直,求的極值。
(2)若函數(shù),求實數(shù)a的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中.
(I)若函數(shù)在區(qū)間(1,2)上不是單調(diào)函數(shù),試求的取值范圍;
(II)已知,如果存在,使得函數(shù)處取得最小值,試求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)其中,曲線在點處的切線垂直于軸.
(Ⅰ) 求的值;
(Ⅱ) 求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

計算下列定積分(本小題滿分12分)
(1)            (2)
(3)                (4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知f(x)=(x∈R)在區(qū)間[-1,1]上是增函數(shù).
(Ⅰ)求實數(shù)a的值組成的集合A;
(Ⅱ)設(shè)關(guān)于x的方程f(x)=的兩個非零實根為x1、x2.試問:是否存在實數(shù)m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分為12分)
已知函數(shù)的圖像過坐標原點,且在點處的切線的斜率是
(1)求實數(shù)的值;
(2)求在區(qū)間上的最大值;
(3)對任意給定的正實數(shù),曲線上是否存在兩點,使得是以為直角頂點的直角三角形,且此三角形斜邊的中點在軸上?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)f(x)=ln+mx2(m∈R)
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若A,B是函數(shù)f(x)圖象上不同的兩點,且直線AB的斜率恒大于1,求實數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(10分)設(shè)函數(shù).
⑴ 求的極值點;
⑵ 若關(guān)于的方程有3個不同實根,求實數(shù)a的取值范圍.
⑶ 已知當恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案