.設(shè)雙曲線的一個(gè)焦點(diǎn)為F,虛軸的一個(gè)端點(diǎn)為B,如果直線FB與 該雙曲線的一條漸近線垂直,那么此雙曲線的離心率為( )

A. B. C. D.

 

D

【解析】

試題分析:設(shè)Fc0),B0,b),則直線FB的斜率是,相對(duì)應(yīng)的漸近線的斜率為,由題可得,∴兩邊同除以ac得:即可解得離心率.

考點(diǎn):雙曲線的幾何性質(zhì).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015屆湖北孝感高級(jí)中學(xué)高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知中心在原點(diǎn)且焦點(diǎn)在x的雙曲線C,過(guò)點(diǎn)P(2)且離心率為2,則雙曲線C的標(biāo)準(zhǔn)方程為____________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆浙江溫州十校聯(lián)合體高二上學(xué)期期末聯(lián)考理數(shù)學(xué)卷(解析版) 題型:解答題

已知曲線C上的動(dòng)點(diǎn)P)滿足到定點(diǎn)A(-1,0)的距離與到定點(diǎn)B1,0距離之比為

(1)求曲線C的方程。

(2)過(guò)點(diǎn)M(1,2)的直線與曲線C交于兩點(diǎn)M、N,若|MN|=4,求直線的方程。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆浙江溫州十校聯(lián)合體高二上學(xué)期期末聯(lián)考理數(shù)學(xué)卷(解析版) 題型:選擇題

已知橢圓上一點(diǎn)到右焦點(diǎn)的距離是1,則點(diǎn)到左焦點(diǎn)的距離是( )

A. B C D

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆浙江溫州十校聯(lián)合體高二上學(xué)期期末聯(lián)考文數(shù)學(xué)卷(解析版) 題型:填空題

已知拋物線上一點(diǎn)到焦點(diǎn)的距離等于5,則到坐標(biāo)原點(diǎn)的距離為 。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆浙江溫州十校聯(lián)合體高二上學(xué)期期末聯(lián)考文數(shù)學(xué)卷(解析版) 題型:選擇題

設(shè)是兩條不同的直線,是三個(gè)不同的平面,下列四個(gè)命題中假命題的是( )

A.   B.

C.    D.,則

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆河南鄭州高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

某公司欲建連成片的網(wǎng)球場(chǎng)數(shù)座,用288萬(wàn)元購(gòu)買土地20000平方米,每座球場(chǎng)的建筑面積為1000平方米,球場(chǎng)每平方米的平均建筑費(fèi)用與所建的球場(chǎng)數(shù)有關(guān),當(dāng)該球場(chǎng)建n座時(shí),每平方米的平均建筑費(fèi)用表示,且(其中),又知建5座球場(chǎng)時(shí),每平方米的平均建筑費(fèi)用為400元.

1)為了使該球場(chǎng)每平方米的綜合費(fèi)用最。ňC合費(fèi)用是建筑費(fèi)用與購(gòu)地費(fèi)用之和),公司應(yīng)建幾座網(wǎng)球場(chǎng)?

2)若球場(chǎng)每平方米的綜合費(fèi)用不超過(guò)820元,最多建幾座網(wǎng)球場(chǎng)?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆河南鄭州高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

已知拋物線上一點(diǎn)Py軸的距離為6,則點(diǎn)P到焦點(diǎn)的距離為( )

A. 7 B.8 C. 9 D. 10

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆河南許昌市五高二上期期末聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

”是“直線與直線相互垂直”的 ( )

A. 充分必要條件 B. 充分而不必要條件

C. 必要而不充分條件 D. 既不充分也不必要條件

 

查看答案和解析>>

同步練習(xí)冊(cè)答案