已知函數(shù)
(1)討論
的單調(diào)性.
(2)證明:
(
,e為自然對數(shù)的底數(shù))
試題分析:(1)
,首先討論
時的單調(diào)性,
時,
,由
的正負,確定討論
的范圍,
或
;
(2)
時,
時
,將
,然后累加得到所證結(jié)果.
(1)a=0時
(2)
時,
(3)1<a<0時,
由(1)知a=1時,
在R上遞減.
,
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
在區(qū)間
和
上單調(diào)遞增,在
上單調(diào)遞減,其圖象與
軸交于
三點,其中點
的坐標為
.
(1)求
的值;
(2)求
的取值范圍;
(3)求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在平面直角坐標系中,長度為3的線段AB的端點A、B分別在
軸上滑動,點M在線段AB上,且
,
(1)若點M的軌跡為曲線C,求其方程;
(2)過點
的直線
與曲線C交于不同兩點E、F,N是曲線上不同于E、F的動點,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
若函數(shù)y=f(x)在x=x0處取得極大值或極小值,則稱x0為函數(shù)y=f(x)的極值點.已知A,b是實數(shù),1和-1是函數(shù)f(x)=x3+Ax2+b x的兩個極值點.
(1)求A和b的值;
(2)設函數(shù)g(x)的導函數(shù)g′(x)=f(x)+2,求g(x)的極值點.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若函數(shù)
滿足
,設
,
,則
與
的大小關系為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)f(x)=x3-3ax2+3x+1.
(1)設a=2,求f(x)的單調(diào)區(qū)間;
(2)設f(x)在區(qū)間(2,3)中至少有一個極值點,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(2013•浙江)已知a∈R,函數(shù)f(x)=2x3﹣3(a+1)x2+6ax
(Ⅰ)若a=1,求曲線y=f(x)在點(2,f(2))處的切線方程;
(Ⅱ)若|a|>1,求f(x)在閉區(qū)間[0,|2a|]上的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
(
)
(1)當a=2時,求
在區(qū)間[e,e
2]上的最大值和最小值;
(2)如果函數(shù)
、
、
在公共定義域D上,滿足
<
<
,那么就稱
為
、
的“伴隨函數(shù)”.已知函數(shù)
,
,若在區(qū)間(1,+∞)上,函數(shù)
是
、
的“伴隨函數(shù)”,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設
,其中a∈R,曲線y=f(x)在點(1,f(1))處的切線與y軸相交于點(0,6).
(1)確定a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.
查看答案和解析>>