(08年安徽卷理)(本小題滿分12分)設(shè)函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)已知對(duì)任意成立,求實(shí)數(shù)的取值范圍。
本題主要考查導(dǎo)數(shù)的概念和計(jì)算、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、利用單調(diào)性求最值以及不等式的性質(zhì).本小題滿分12分.
【解析】(Ⅰ) .令,則.
列表如下:
0 | ||||
單調(diào)增 | 極大值 | 單調(diào)減 | 單調(diào)減 |
所以的單調(diào)增區(qū)間為。單調(diào)減區(qū)間為和.
(Ⅱ)在兩邊取對(duì)數(shù),得:.
由于,所以………………………………①
由(Ⅰ)結(jié)果知,當(dāng)時(shí),.
為使①式對(duì)任意求成立,當(dāng)且僅當(dāng),即為所求范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(08年安徽卷理) (本小題滿分13分)
設(shè)橢圓過點(diǎn),且左焦點(diǎn)為
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)過點(diǎn)的動(dòng)直線與橢圓相交于兩不同點(diǎn)時(shí),在線段上取點(diǎn),滿足。證明:點(diǎn)Q總在某定直線上。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年安徽卷理)(本小題滿分12分)
為防止風(fēng)沙危害,某地決定建設(shè)防護(hù)綠化帶,種植楊樹、沙柳等植物。某人一次種植了株沙柳。各株沙柳的成活與否是相互獨(dú)立的,成活率為,設(shè)為成活沙柳的株數(shù),數(shù)學(xué)期望為3,標(biāo)準(zhǔn)差為。
(Ⅰ)求的值,并寫出的分布列;
(Ⅱ)若有3株或3株以上的沙柳未成活,則需要補(bǔ)種,求需要補(bǔ)種沙柳的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年安徽卷理)(本小題滿分12分)
為防止風(fēng)沙危害,某地決定建設(shè)防護(hù)綠化帶,種植楊樹、沙柳等植物。某人一次種植了株沙柳。各株沙柳的成活與否是相互獨(dú)立的,成活率為,設(shè)為成活沙柳的株數(shù),數(shù)學(xué)期望為3,標(biāo)準(zhǔn)差為。
(Ⅰ)求的值,并寫出的分布列;
(Ⅱ)若有3株或3株以上的沙柳未成活,則需要補(bǔ)種,求需要補(bǔ)種沙柳的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年安徽卷理)(本小題滿分12分)
如圖,在四棱錐中,底面是邊長(zhǎng)為的菱形,,底面,,為的中點(diǎn),為的中點(diǎn).
(I)證明:直線平面.
(II)求異面直線與所成角的大小.
(III)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年安徽卷理)若A為不等式組表示的平面區(qū)域,則當(dāng)a從-2連續(xù)變化到1時(shí),動(dòng)直線x+y=a掃過A中的那部分區(qū)域的面積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com