精英家教網 > 高中數學 > 題目詳情
已知A為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的右頂點,若雙曲線的右支上存在異于A的點B,使得直線AB的傾斜角為
π
4
,則雙曲線的離心率的取值范圍為
(1,
2
)
(1,
2
)
分析:設直線AB的方程為y=x-a,與雙曲線的方程聯(lián)立得到根與系數的關系,再利用a•xB>a2,及b2=c2-a2,離心率計算公式即可得出.
解答:解:設直線AB的方程為y=x-a,聯(lián)立
y=x-a
x2
a2
-
y2
b2
=1
,化為(b2-a2)x2+2a3x-a4-a2b2=0.
∵此方程存在兩個正實數根,一個是x1=a,另一個x2>a.
a•x2=
-a4-a2b2
b2-a2
>a2,化為a2>b2=c2-a2,得到
c2
a2
<2
,解得e=
c
a
2

又e>1.
∴雙曲線的離心率的取值范圍為(1,
2
).
故答案為(1,
2
).
點評:本題考查了直線與雙曲線相交轉化為方程聯(lián)立得到根與系數的關系、b2=c2-a2、離心率計算公式等基礎知識與基本技能方法,屬于難題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知a>0,設p:函數y=ax在R上單調遞減;命題q:方程
x2
a-2
+
y2
a-0.5
=1
表示的曲線是雙曲線,如果“p或q”為真,“p且q”為假,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•天津模擬)已知拋物線y2=2px(p>0)上一點M(1,m)(m>0)到其焦點的距離為5,雙曲線
x2
a
-y2=1
的左頂點為A,若雙曲線一條漸近線與直線AM平行,則實數a等于(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網已知雙曲線
x2
a 2
-
y2
b 2
=1
(b>a>0),0為坐標原點,離心率e=2,點M(
5
3
)在雙曲線上.
(1)求雙曲線的方程;
(2)若直線l與雙曲線交于P、Q兩點,且
OP
OQ
=0,求:|OP|2+|OQ|2的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•濟寧一模)已知拋物線x2=12y的焦點與雙曲線
x2
a
-y3=-1
的一個焦點重合,則以此拋物線的焦點為圓心,雙曲線的離心率為半徑的圓的方程是(  )

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知a>0,設p:函數y=ax在R上單調遞減;命題q:方程
x2
a-2
+
y2
a-0.5
=1
表示的曲線是雙曲線,如果“p或q”為真,“p且q”為假,求a的取值范圍.

查看答案和解析>>

同步練習冊答案