【題目】已知F1,F2是橢圓Cab0)的左、右焦點(diǎn),過(guò)橢圓的上頂點(diǎn)的直線(xiàn)x+y=1被橢圓截得的弦的中點(diǎn)坐標(biāo)為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)過(guò)F1的直線(xiàn)l交橢圓于A,B兩點(diǎn),當(dāng)△ABF2面積最大時(shí),求直線(xiàn)l的方程.

【答案】(Ⅰ)y2=1;(Ⅱ)xy0x+y0.

【解析】

(Ⅰ)根據(jù)直線(xiàn)橢圓的過(guò)上頂點(diǎn),得b=1,再利用點(diǎn)差法以及弦中點(diǎn)坐標(biāo)解得a2=3,即得橢圓方程;

(Ⅱ)先設(shè)直線(xiàn)l方程并與橢圓方程聯(lián)立,結(jié)合韋達(dá)定理,并以|F1F2|為底邊長(zhǎng)求△ABF2面積函數(shù)關(guān)系式,在根據(jù)基本不等式求△ABF2面積最大值,進(jìn)而確定直線(xiàn)l的方程.

(Ⅰ)直線(xiàn)x+y=1y軸的交于(0,1)點(diǎn),∴b=1,

設(shè)直線(xiàn)x+y=1與橢圓C交于點(diǎn)Mx1,y1),Nx2,y2),

x1+x2y1+y2

1,1,

兩式相減可得x1x2)(x1+x2y1y2)(y1+y2)=0,

,

1

解得a2=3,

∴橢圓C的方程為y2=1.

(Ⅱ)由(Ⅰ)可得F10),F2,0),設(shè)Ax3,y3),Bx4y4),

可設(shè)直線(xiàn)l的方程x=my,將直線(xiàn)l的方程x=my代入y2=1,可得(m2+3y22my1=0,

y3+y4,y3y4

|y3y4|,

|F1F2||y3y4|||y3y4|

當(dāng)且僅當(dāng),即m1,△ABF2面積最大,

即直線(xiàn)l的方程為xy0x+y0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線(xiàn)C1的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C2的極坐標(biāo)方程為

1)寫(xiě)出曲線(xiàn)C1C2的直角坐標(biāo)方程;

2)已知P為曲線(xiàn)C2上的動(dòng)點(diǎn),過(guò)點(diǎn)P作曲線(xiàn)C1的切線(xiàn),切點(diǎn)為A,求|PA|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】代表紅球,代表藍(lán)球,代表黑球,由加法原理及乘法原理,從1個(gè)紅球和1個(gè)藍(lán)球中取出若干個(gè)球的所有取法可由的展開(kāi)式表示出來(lái),如:“1”表示一個(gè)球都不取、“”表示取出一個(gè)紅球,而“”用表示把紅球和藍(lán)球都取出來(lái).以此類(lèi)推,下列各式中,其展開(kāi)式可用來(lái)表示從5個(gè)有區(qū)別的紅球、5個(gè)無(wú)區(qū)別的藍(lán)球、5個(gè)無(wú)區(qū)別的黑球中取出若干個(gè)球,且所有的藍(lán)球都取出或都不取出的所有取法的是( )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在生活中,我們常看到各種各樣的簡(jiǎn)易遮陽(yáng)棚.現(xiàn)有直徑為的圓面,在圓周上選定一個(gè)點(diǎn)固定在水平的地面上,然后將圓面撐起,使得圓面與南北方向的某一直線(xiàn)平行,做成簡(jiǎn)易遮陽(yáng)棚.設(shè)正東方向射出的太陽(yáng)光線(xiàn)與地面成角,若要使所遮陰影面的面積最大,那么圓面與陰影面所成角的大小為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)拋物線(xiàn)y2=4x的焦點(diǎn)的直線(xiàn)l與拋物線(xiàn)交于A,B兩點(diǎn),設(shè)點(diǎn)M3,0.若△MAB的面積為,則|AB|=( )

A.2B.4C.D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代教育要求學(xué)生掌握六藝,即禮、樂(lè)、射、御、書(shū)、數(shù).某校為弘揚(yáng)中國(guó)傳統(tǒng)文化,舉行有關(guān)六藝的知識(shí)競(jìng)賽.甲、乙、丙三位同學(xué)進(jìn)行了決賽.決賽規(guī)則:決賽共分場(chǎng),每場(chǎng)比賽的第一名、第二名、第三名的得分分別為,選手最后得分為各場(chǎng)得分之和,決賽結(jié)果是甲最后得分為分,乙和丙最后得分都為分,且乙在其中一場(chǎng)比賽中獲得第一名,現(xiàn)有下列說(shuō)法:

①每場(chǎng)比賽第一名得分分;

②甲可能有一場(chǎng)比賽獲得第二名;

③乙有四場(chǎng)比賽獲得第三名;

④丙可能有一場(chǎng)比賽獲得第一名.

則以上說(shuō)法中正確的序號(hào)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(甲),是邊長(zhǎng)為的等邊三角形,點(diǎn)分別為的中點(diǎn),將沿折成四棱錐,使,如圖(乙).

1)求證:平面

2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某藥業(yè)公司統(tǒng)計(jì)了2010-2019年這10年某種疾病的患者人數(shù),結(jié)論如下:該疾病全國(guó)每年的患者人數(shù)都不低于100萬(wàn),其中有3年的患者人數(shù)低于200萬(wàn),有6年的患者人數(shù)不低于200萬(wàn)且低于300萬(wàn),有1年的患者人數(shù)不低于300萬(wàn).

1)藥業(yè)公司為了解一新藥品對(duì)該疾病的療效,選擇了200名患者,隨機(jī)平均分為兩組作為實(shí)驗(yàn)組和對(duì)照組,實(shí)驗(yàn)結(jié)束時(shí),有顯著療效的共110人,實(shí)驗(yàn)組中有顯著療效的比率為70.請(qǐng)完成如下的2×2列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99.9%把握認(rèn)為該藥品對(duì)該疾病有顯著療效;

實(shí)驗(yàn)組

對(duì)照組

合計(jì)

有顯著療效

無(wú)顯著療效

合計(jì)

200

2)藥業(yè)公司最多能引進(jìn)3條新藥品的生產(chǎn)線(xiàn),據(jù)測(cè)算,公司按如下條件運(yùn)行生產(chǎn)線(xiàn):

該疾病患者人數(shù)(單位:萬(wàn))

最多可運(yùn)行生產(chǎn)線(xiàn)數(shù)

1

2

3

每運(yùn)行一條生產(chǎn)線(xiàn),可產(chǎn)生年利潤(rùn)6000萬(wàn)元,沒(méi)運(yùn)行的生產(chǎn)線(xiàn)毎條每年要虧損1000萬(wàn)元.根據(jù)該藥業(yè)公司這10年的統(tǒng)計(jì)數(shù)據(jù),將患者人數(shù)在以上三段的頻率視為相應(yīng)段的概率、假設(shè)各年的患者人數(shù)相互獨(dú)立.欲使該藥業(yè)公司年總利潤(rùn)的期望值達(dá)到最大,應(yīng)引進(jìn)多少條生產(chǎn)線(xiàn)?

附:參考公式:,其中.

0.05

0.025

0.010

0.001

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)C的極坐標(biāo)方程是.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線(xiàn)l的參數(shù)方程是t為參數(shù)),直線(xiàn)l與曲線(xiàn)C相交于A,B兩點(diǎn).

1)求的長(zhǎng);

2)求點(diǎn)A,B兩點(diǎn)的距離之積.

查看答案和解析>>

同步練習(xí)冊(cè)答案