假設關于某設備的使用年限x和所指出的維修費用y(萬元),有如下統(tǒng)計資料:
x 2 3 4 5 6
y 2.2 3.8 5.5 6.5 7.0
若由資料可知y對x呈線性相關關系.試求:
(1)線性回歸方程;
(2)估計使用年限為10年時,維修費用是多少?
(  
b
=
n
i
xiyi-n
.
x
.
y
n
i
x
2
i
-n
.
x
2
,
a
=
.
y
-
b
.
x
參考數(shù)據(jù)
5
i=1
x
2
i
=90,
5
i=1
xiyi=112.3
分析:(1)根據(jù)回歸直線方程的定義求線性回歸方程;
(2)利用回歸直線,解當x=10對應的函數(shù)值即可.
解答:解:(1)
.
x
=
1
5
(2+3+4+5+6)=
20
5
=4

.
y
=
1
5
(2.2+3.8+5.5+6.5+7)=
25
5
=5

則根據(jù)公式可得
b
=
112.3-5×4×5
90-5×16
=
12.3
10
=1.23
,
a
=5-1.23×4=0.08
,
∴回歸直線方程為
y
=1.23x+0.08

(2)當使用年限為10年時,即x=10時,
y
=1.23×10+0.08=12.38
(萬元).
點評:本題主要考查線性回歸直線的應用,利用公式直接將數(shù)據(jù)代入計算即可,考查學生的運算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

假設關于某設備的使用年限x和所支出的維修費用 y(萬元),有如下的統(tǒng)計資料:
x 2 3 4 5 6
y 2.2 3.8 5.5 6.5 7.0
若由資料可知y對x呈線性相關關系,且線性回歸方程為y=a+bx,其中已知b=1.23,請估計使用年限為20年時,維修費用約為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

假設關于某設備的使用年限x和所支出的維修費用y(萬元),有如下的統(tǒng)計資料:
x 2 3 4 5 6
y 2.2 3.8 5.5 6.5 7.0
試求:
(1)對x與y進行線性相關性檢驗;
(2)如果y對x呈線性相關關系,求線性回歸方程;(其中
a
b
均保留兩位小數(shù))
(3)估計使用年限為10年時,維修費用是多少萬元?(保留兩位小數(shù))
(參考公式與數(shù)據(jù):r=
n
i=1
xiyi-n
.
x
.
y
(
n
i=1
x
2
i
-n
.
x
2
)(
n
i=1
y
2
i
-n
.
y
2
,
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
,
a
=
.
y
=
b
.
x
,
5
i=1
 
x
2
i
=90,
5
i=1
y
2
i
=140.8,
.
x
=4,
.
y
=5
,
5
i=1
xiyi
=1123,
79
≈8.9,
2
≈1.4
,n-2=3時,r0.05=0.878)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

假設關于某設備的使用年限x和所支出的維修費用y(萬元),有如下的統(tǒng)計資料:
使用年限x 2 3 4 5 6
維修費用y 2.2 3.8 5.5 6.5 7.0
由資料知y與x呈線性相關關系.(參考數(shù)據(jù)
5
i=1
x
2
i
=90,
5
i=1
xiyi
=112.3)
估計當使用年限為10年時,維修費用是
12.38
12.38
萬元.
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i
(xi-
.
x
)
2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x2-n
.
x
2
a
=
.
y
-b
.
x

線性回歸方程:y=
b
x+
a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

假設關于某設備的使用年限x和所支出的維修費用y(萬元),有如下的統(tǒng)計數(shù)據(jù)(xi,yi)(i=1,2,3,4,5)由資料知y對x呈線性相關,并且統(tǒng)計的五組數(shù)據(jù)得平均值分別為
.
x
=4
,
.
y
=5.4
,若用五組數(shù)據(jù)得到的線性回歸方程
y
=bx+a去估計,使用8年的維修費用比使用7年的維修費用多1.1萬元,
(1)求回歸直線方程;(2)估計使用年限為10年時,維修費用是多少?

查看答案和解析>>

同步練習冊答案