(本小題滿分16分)
如圖,點A在直線上移動,等腰△OPA的頂角∠OPA為120°(OP,A按順時針方向排列),求點P的軌跡方程
    
解:取O為極點,x正半軸為極軸,建立極坐標系,則直線的極坐標方程為rcosq=5
A(r0,q0),P(r,q) ……………………2分

  …………………………………………8分
為等腰直角三角形,而,
………………………………………12分
把<2>代入<1>,得點P的軌跡的極坐標方程為:
………………16分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線與雙曲線有相同的焦點,點是兩曲線的一個交點,且軸,若為雙曲線的一條斜率大于0的漸近線,則的斜率可以在下列給出的某個區(qū)間內(nèi),該區(qū)間可以是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(13分)
在直角坐標系中,點M到點的距離之和是4,點M的軌跡是C,直線與軌跡C交于不同的兩點P和Q.
(I)求軌跡C的方程;
(II)是否存在常數(shù)?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)在直角坐標系中,已知橢圓,矩陣陣,,求在矩陣作用下變換所得到的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)已知動圓與直線相切,且過定點F(1, 0),動圓圓心為M.
(1)求點M的軌跡C的方程;
(2)若直線l與曲線C交于A、B兩點,且O為坐標原點),求證:直線l過一定點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知動圓P過點且與直線相切.
(Ⅰ) 求動圓圓心P的軌跡E的方程;
(Ⅱ) 設直線與軌跡E交于點A、BM是線段AB的中點,過M軸的垂線交軌跡EN
① 證明:軌跡EN處的切線AB平行;
② 是否存在實數(shù),使?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

平面內(nèi)到兩定點的距離之和為4的點M的軌跡是      (    )
A.橢圓B.線段C.圓D.以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

與直線平行的拋物線的切線方程是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線y=x+1與曲線相切,則的值為(    )        
A.1B.2C.-1D.-2

查看答案和解析>>

同步練習冊答案