【題目】如圖,直三棱柱ABC﹣A1B1C1中,AB=AC=2,AA1=3,D為BC中點,
(1)證明:A1C∥平面B1AD;
(2)求二面角B1﹣AD﹣B的余弦值.
【答案】
(1)證明:設A1B∩B1A=E,連接DE,
則在△A1BC中,E、D分別是A1B、BC的中點,
∴A1C∥DE,又A1C平面B1AD,DE平面B1AD,
∴A1C∥平面B1AD
(2)解:如圖,以A為原點,AB、AC、AA1所在的直線為x、y、z建立坐標系.
則B(2,0,0),C(0,2,0),B1(2,0,3),
∵D為BC的中點,∴D(1,1,0)
=(1,1,0), =(2,0,3)
取平面BAD的法向量為 =(0,0,1),設平面B1AD的法向量為 =(x,y,z),
則 ,令x=1,y=﹣1,z=﹣ ,∴ =(1,﹣1,﹣ ),
∴cos< >= =﹣
∵二面角B1﹣AD﹣B為銳二面角,
∴二面角B1﹣AD﹣B的余弦值為 .
【解析】(1)設A1B∩B1A=E,連接DE,則A1C∥DE,由此能證明A1C∥平面B1AD.(2)以A為原點,AB、AC、AA1所在的直線為x、y、z建立坐標系.利用向量法能求出二面角B1﹣AD﹣B的余弦值.
【考點精析】本題主要考查了直線與平面平行的判定的相關(guān)知識點,需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|1﹣m≤x≤2m+1},B= .
(1)當m=2時,求A∩B,A∪B;
(2)若BA,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在等腰梯形ABCD中,AB∥CD,且|AB|=2,|AD|=1,|CD|=2x其中x∈(0,1),以A,B為焦點且過點D的雙曲線的離心率為e1 , 以C,D為焦點且過點A的橢圓的離心率為e2 , 若對任意x∈(0,1)不等式t<e1+e2恒成立,則t的最大值為( )
A.
B.
C.2
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是兩個邊長為2的正三角形,DC=4,O為BD的中點.
(1)求證:PO⊥平面ABCD;
(2)若E為線段PA上一點,且 ,求二面角P﹣OE﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直四棱柱 中,底面 是邊長為2的正方形, 分別為線段 , 的中點.
(1)求證: ||平面 ;
(2)四棱柱 的外接球的表面積為 ,求異面直線 與 所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),當x≥0時,f(x)=x2﹣x
(1)求f(x)的解析式;
(2)畫出f(x)的圖象;
(3)若方程f(x)=k有4個解,根據(jù)函數(shù)圖象求k的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從1,2,3,4,5,6這六個數(shù)中,不放回地任意取兩個數(shù),每次取一個數(shù),則所取的兩個數(shù)都是偶數(shù)的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在R上的函數(shù)y=f(x),滿足f(1﹣x)=f(x),(x﹣ )f′(x)>0,若x1<x2且x1+x2>1,則有( )
A.f(x1)<f(x2)
B.f(x1)>f(x2)
C.f(x1)=f(x2)
D.不能確定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設偶函數(shù)f(x)(x∈R)的導函數(shù)是函數(shù)f′(x),f(2)=0,當x<0時,xf′(x)﹣f(x)>0,則使得f(x)>0成立的x的取值范圍是( )
A.(﹣∞,﹣2)∪(0,2)
B.(﹣∞,﹣2)∪(2,+∞)
C.(﹣2,0)∪(2,+∞)
D.(0,2)∪(﹣2,0)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com