【題目】隨著現(xiàn)代社會的發(fā)展,我國對于環(huán)境保護越來越重視,企業(yè)的環(huán)保意識也越來越強.現(xiàn)某大型企業(yè)為此建立了5套環(huán)境監(jiān)測系統(tǒng),并制定如下方案:每年企業(yè)的環(huán)境監(jiān)測費用預算定為1200萬元,日常全天候開啟3套環(huán)境監(jiān)測系統(tǒng),若至少2套系統(tǒng)監(jiān)測出排放超標,則立即檢查污染源處理系統(tǒng);若有且只有1套系統(tǒng)監(jiān)測出排放超標,則立即同時啟動另外2套系統(tǒng)進行1小時的監(jiān)測,且后啟動的這2套監(jiān)測系統(tǒng)中只要有1套系統(tǒng)監(jiān)測出排放超標,也立即檢查污染源處理系統(tǒng).設每個時間段(1小時為計量單位)被每套系統(tǒng)監(jiān)測出排放超標的概率均為,且各個時間段每套系統(tǒng)監(jiān)測出排放超標情況相互獨立.

1)當時,求某個時間段需要檢查污染源處理系統(tǒng)的概率;

2)若每套環(huán)境監(jiān)測系統(tǒng)運行成本為300/小時(不啟動則不產生運行費用),除運行費用外,所有的環(huán)境監(jiān)測系統(tǒng)每年的維修和保養(yǎng)費用需要100萬元.現(xiàn)以此方案實施,問該企業(yè)的環(huán)境監(jiān)測費用是否會超過預算(全年按9000小時計算)?并說明理由.

【答案】(1);(2)不會超過預算,理由見解析

【解析】

(1)求出某個時間段在開啟3套系統(tǒng)就被確定需要檢查污染源處理系統(tǒng)的概率為,某個時間段在需要開啟另外2套系統(tǒng)才能確定需要檢查污染源處理系統(tǒng)的概率為,可得某個時間段需要檢查污染源處理系統(tǒng)的概率;

(2)設某個時間段環(huán)境監(jiān)測系統(tǒng)的運行費用為元,則的可能取值為900,1500.求得,,求得其分布列和期望,對其求導,研究函數(shù)的單調性,可得期望的最大值,從而得出結論.

(1)某個時間段在開啟3套系統(tǒng)就被確定需要檢查污染源處理系統(tǒng)的概率為,

某個時間段在需要開啟另外2套系統(tǒng)才能確定需要檢查污染源處理系統(tǒng)的概率為

某個時間段需要檢查污染源處理系統(tǒng)的概率為.

(2)設某個時間段環(huán)境監(jiān)測系統(tǒng)的運行費用為元,則的可能取值為900,1500.

,

,則

時,上單調遞增;

時,,在上單調遞減,

的最大值為,

實施此方案,最高費用為(萬元),

,故不會超過預算.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】圓周率是一個在數(shù)學及物理學中普遍存在的數(shù)學常數(shù),它既常用又神秘,古今中外很多數(shù)學家曾研究它的計算方法.下面做一個游戲:讓大家各自隨意寫下兩個小于1的正數(shù)然后請他們各自檢查一下,所得的兩數(shù)與1是否能構成一個銳角三角形的三邊,最后把結論告訴你,只需將每個人的結論記錄下來就能算出圓周率的近似值.假設有個人說“能”,而有個人說“不能”,那么應用你學過的知識可算得圓周率的近似值為()

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】、、為平面內的個點,在平面內的所有點中,若點、、點的距離之和最小,則稱點、、點的一個中位點,有下列命題:①、、三個點共線,在線段上,則、、的中位點;②直角三角形斜邊的中點是該直線三角形三個頂點的中位點;③若四個點、共線,則它們的中位點存在且唯一;④梯形對角線的交點是該梯形四個頂點的唯一中位點;其中的真命題是(

A.②④B.①②C.①④D.①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是(

A.m為實數(shù),若方程表示雙曲線,則m2

B.pq為真命題pq為真命題的充分不必要條件

C.命題xR,使得x2+2x+30”的否定是:xR,x2+2x+30”

D.命題x0yfx)的極值點,則fx)=0”的逆命題是真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列的前項和為,對一切,點都在函數(shù)的圖象上.

1)求,歸納數(shù)列的通項公式(不必證明).

2)將數(shù)列依次按1項、2項、3項、4項循環(huán)地分為,,,;,,;,分別計算各個括號內各數(shù)之和,設由這些和按原來括號的前后順序構成的數(shù)列為,求的值.

3)設為數(shù)列的前項積,且,求數(shù)列的最大項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)為確定下一年度投入某種產品的生產所需的資金,需了解每投入2千萬資金后,工人人數(shù)(單位:百人)對年產能(單位:千萬元)的影響,對投入的人力和年產能的數(shù)據(jù)作了初步處理,得到散點圖和統(tǒng)計量表.

1)根據(jù)散點圖判斷:哪一個適宜作為年產能關于投入的人力的回歸方程類型?并說明理由?

2)根據(jù)(1)的判斷結果及相關的計算數(shù)據(jù),建立關于的回歸方程;

3)現(xiàn)該企業(yè)共有2000名生產工人,資金非常充足,為了使得年產能達到最大值,則下一年度共需投入多少資金(單位:千萬元)?

附注:對于一組數(shù)據(jù),,其回歸直線的斜率和截距的最小二乘估計分別為,(說明:的導函數(shù)為)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調性;

(2)若存在兩個極值點,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知橢圓C的方程為,設AB是過橢圓C中心O的任意弦,l是線段AB的垂直平分線,Ml上與O不重合的點.

1)求以橢圓的焦點為頂點,頂點為焦點的雙曲線方程;

2)若,當點A在橢圓C上運動時,求點M的軌跡方程;

3)記Ml與橢圓C的交點,若直線AB的方程為,當面積取最小值時,求直線AB的方程;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設等差數(shù)列的前項和,.

(1)求的通項公式;

(2)若不等式對所有的正整數(shù)都成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案