在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若.
(1)求證:;
(2)若,且,求的值.
(1)證明見(jiàn)解析;(2).
解析試題分析:(1)要求證角的范圍,我們應(yīng)該求出或的取值范圍,已知條件是角的關(guān)系,首先變形(通分,應(yīng)用三角公式)得,結(jié)合兩角和與差的余弦公式,有,即,變形為,解得,所以有,也可由正弦定理得,再由余弦定理有,從而有,也能得到;(2)要求向量的模,一般通過(guò)求這個(gè)向量的平方來(lái)解決,而向量的平方可由向量的數(shù)量積計(jì)算得到,如,由及可得,由(1),于是可得,這樣所要結(jié)論可求.
(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a2/e/10ogw2.png" style="vertical-align:middle;" /> 2分
所以 ,由正弦定理可得, 4分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/20/0/wnxks1.png" style="vertical-align:middle;" />,
所以,即 6分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c0/d/0kko1.png" style="vertical-align:middle;" />,且,所以B不是最大角,
所以. 8分
所以,得,因而. 10分
由余弦定理得,所以. 12分
所以
即 14分
考點(diǎn):(1)三角恒等式與余弦定理;(2)向量的模.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=cos(+x)·cos(-x),g(x)=sin2x-.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)h(x)=f(x)-g(x)的最大值,并求使h(x)取得最大值的x的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,,分別為三個(gè)內(nèi)角,,的對(duì)邊, =sincos.
(1)求;
(2)若=,的面積為,求,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com