直三棱柱ABC-A1B1C1中,∠A1B1C1=90°,且AB=BC=BB1,E,F(xiàn)分別是AB,CC1的中點(diǎn),那么A1C與EF所成的角的余弦值為
 
分析:先分別以BA、BC、BB1為ox、oy、oz軸,建立空間直角坐標(biāo)系,規(guī)定棱長,再求出A1C與EF直線所在的向量坐標(biāo),然后根據(jù)向量的夾角公式求出夾角的余弦值即可.
解答:解:分別以BA、BC、BB1為ox、oy、oz軸,建立空間直角坐標(biāo)系
A1C
=(-1,1,-1),?
EF
=(-
1
2
,1,
1
2
)

cos?
A1C
,
EF
?=
A1C
EF
|
A1C
|•|
EF
|
=
1
3
3
2
=
2
3

故答案為
2
3
點(diǎn)評:本小題主要考查異面直線所成的角,以及空間向量,考查空間想象能力、運(yùn)算能力和推理論證能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)直三棱柱ABC-A1B1C1中,AC=BC=BB1=1,AB1=
3

(1)求證:平面AB1C⊥平面B1CB;    
(2)求三棱錐A1-AB1C的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=BB1=a,直線B1C與平面ABC成30°角.
(1)求證:平面B1AC⊥平面ABB1A1;   
(2)求C1到平面B1AC的距離;   
(3)求三棱錐A1-AB1C的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1 B1 C1中,AA1=1,AC⊥BC,AC=BC=2,則BC1與平面AB B1 A1所成角的正弦值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如圖,在直三棱柱ABC-A1 B1 C1中,AA1=1,AC⊥BC,AC=BC=2,則BC1與平面AB B1 A1所成角的正弦值是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶八中高三(下)第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

如圖,在直三棱柱ABC-A1 B1 C1中,AA1=1,AC⊥BC,AC=BC=2,則BC1與平面AB B1 A1所成角的正弦值是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案