【題目】某公園準(zhǔn)備在一圓形水池里設(shè)置兩個(gè)觀景噴泉,觀景噴泉的示意圖如圖所示,A,B兩點(diǎn)為噴泉,圓心O為AB的中點(diǎn),其中OA=OB=a米,半徑OC=10米,市民可位于水池邊緣任意一點(diǎn)C處觀賞.

(1)若當(dāng)∠OBC= 時(shí),sin∠BCO= ,求此時(shí)a的值;
(2)設(shè)y=CA2+CB2 , 且CA2+CB2≤232.
(i)試將y表示為a的函數(shù),并求出a的取值范圍;
(ii)若同時(shí)要求市民在水池邊緣任意一點(diǎn)C處觀賞噴泉時(shí),觀賞角度∠ACB的最大值不小于 ,試求A,B兩處噴泉間距離的最小值.

【答案】
(1)解:在△OBC中,由正弦定理得, ,

易得


(2)解:(i)易知AC2=100+a2﹣20acos∠AOC,BC2=100+a2﹣20acos∠BOC,

故CA2+CB2=200+2a2

又因?yàn)镃A2+CB2≤232,即200+2a2≤232,解得0<a≤4,

即y=200+2a2,a∈(0,4];

(ii)當(dāng)觀賞角度∠ACB的最大時(shí),cos∠ACB取得最小值,由余弦定理可得 ,

由題意可知 ,解此不等式得 ,

經(jīng)驗(yàn)證, ,即


【解析】(1)當(dāng)∠OBC= 時(shí),sin∠BCO= ,由正弦定理求此時(shí)a的值;(2)(i)利用余弦定理,結(jié)合CA2+CB2≤232,即200+2a2≤232,可將y表示為a的函數(shù),并求出a的取值范圍;(ii)當(dāng)觀賞角度∠ACB的最大時(shí),cos∠ACB取得最小值,由余弦定理可得結(jié)論.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用正弦定理的定義和余弦定理的定義的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握正弦定理:;余弦定理:;;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知恒等式(1+x+x2n=a0+a1x+a2x2+…+a2nx2n
(1)求a1+a2+a3+…+a2n和a2+2a3+22a4+…+22n2a2n的值;
(2)當(dāng)n≥6時(shí),求證: a2+2A a3+…+22n2 a2n<49n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (α為參數(shù))以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為 .若直線l與曲線C交于A,B,求線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在圓上任取一點(diǎn),過(guò)點(diǎn)軸的垂線段為垂足.,當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),

(1)求點(diǎn)的軌跡的方程;

(2) 若,直線交曲線、兩點(diǎn)(點(diǎn)與點(diǎn)不重合),且滿(mǎn)足.為坐標(biāo)原點(diǎn),點(diǎn)滿(mǎn)足,證明直線過(guò)定點(diǎn),并求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線

(1)若,求經(jīng)過(guò)點(diǎn)且與曲線只有一個(gè)公共點(diǎn)的直線方程:

(2)若,請(qǐng)?jiān)谥苯亲鴺?biāo)平面內(nèi)找出縱坐標(biāo)不同的兩個(gè)點(diǎn),此兩點(diǎn)滿(mǎn)足條件:無(wú)論如何變化,這兩個(gè)點(diǎn)都不在曲線上;

(3)若曲線與線段有公共點(diǎn),求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù),函數(shù) ,若對(duì)所有的總存在,使得成立,則實(shí)數(shù)的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)設(shè),若不等式對(duì)任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:x∈[-1,2],函數(shù)f(x)=x2-x的值大于0,若p∨q是真命題,則命題q可以是(  )

A. x0∈(-1,1),cos x0

B. “-3<m<0”是“函數(shù)f(x)=x+log2x+m在區(qū)間上有零點(diǎn)”的必要不充分條件

C. x=是曲線f(x)=sin 2x+cos 2x的一條對(duì)稱(chēng)軸

D. 若x∈(0,2),則在曲線f(x)=ex(x-2)上任意一點(diǎn)處的切線的斜率不小于

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,圓C的方程為ρ=2acosθ(a≠0),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系,設(shè)直線l的參數(shù)方程為 (t為參數(shù)).
(1)求圓C的直角坐標(biāo)方程(化為標(biāo)準(zhǔn)方程)和直線l的極坐標(biāo)方程;
(2)若直線l與圓C只有一個(gè)公共點(diǎn),且a<1,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案