試證明:橢圓與曲線有相同的焦點。
證明略
證明:當時,表示焦點在軸上的雙曲線,,∴與橢圓有相同的焦點;當時,表示焦點在軸上的橢圓,,∴,此時曲線也與有相同的焦點,綜上,曲線與有相同的焦點。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的離心率是,則兩準線間的距離是           

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓 (a>b>0),A、B是橢圓上的兩點,線段AB的垂直平分線與x軸相交于點P(x0,0).證明

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設點是橢圓上的一點,是焦點,若是直角,則的面積為               

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的焦距為,則=                

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求橢圓的長軸長和短軸長、離心率、焦點和頂點坐標及準線方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
橢圓與直線相交于兩點,且為坐標原點).(Ⅰ)求證:等于定值;
(Ⅱ)當橢圓的離心率時,求橢圓長軸長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓上一點與其中心及長軸的一個端點構(gòu)成等腰直角三角形,則此橢圓的離心率為( ▲ )
A.B. C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的中心在原點,離心率等于
2
3
,右焦點F是圓(x-1)2+y2=1的圓心,過橢圓上位于y軸左側(cè)的一動點P作該圓的兩條切線分別交y軸于M、N兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求線段MN的長的最大值,并求出此時點P的坐標.

查看答案和解析>>

同步練習冊答案