在平面直角坐標系中,O為坐標原點,已知兩點M(1,—3)、N(5,1),若動點C滿足交于A、B兩點。
(I)求證:;
(2)在x軸上是否存在一點,使得過點P的直線l交拋物線于D、E兩點,并以線段DE為直徑的圓都過原點。若存在,請求出m的值,若不存在,請說明理由。
(Ⅰ) 見解析  (Ⅱ)存在m=4
(I)解:由
知點C的軌跡是過M,N兩點的直線,故點C的軌跡方程是:

(II)解:假設(shè)存在于D、E兩點,并以線段DE為直徑的圓都過原點。設(shè)
由題意,直線l的斜率不為零, 所以,可設(shè)直線l的方程為
代入 …………7分

10分

 
  

  此時,以DE為直徑的圓都過原點。 …………12
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知斜率為的直線過拋物線的焦點,且與拋物線交于兩點,(1)求直線的方程(用表示);
(2)若設(shè),求證:;
(3)若,求拋物線方程.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的一條準線方程是其左、右頂點分別是A、B;雙曲線的一條漸近線方程為3x-5y=0.
(Ⅰ)求橢圓C1的方程及雙曲線C2的離心率;
(Ⅱ)在第一象限內(nèi)取雙曲線C2上一點P,連結(jié)AP交橢圓C1于點M,連結(jié)PB并延長交橢圓C1于點N,若. 求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓:上的兩點A(0,)和點B,若以AB為邊作正△ABC,當(dāng)B變動時,計算△ABC的最大面積及其條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)設(shè)直線與橢圓相切。 (I)試將表示出來; (Ⅱ)若經(jīng)過動點可以向橢圓引兩條互相垂直的切線,為坐標原點,求證:為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓C的中心為坐標原點O,焦點在y軸上,離心率e = ,橢圓上的點到焦點的最短距離為1-, 直線ly軸交于點P(0,m),與橢圓C交于相異兩點A、B,且
(1)求橢圓方程;
(2)若,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在東西方向直線延伸的湖岸上有一港口O,一艘機艇以40km/h的速度從O港出發(fā),先沿東偏北的某個方向直線前進到達A處,然后改向正北方向航行,總共航行30分鐘因機器出現(xiàn)故障而停在湖里的P處,由于營救人員不知該機艇的最初航向及何時改變的航向,故無法確定機艇停泊的準確位置,試劃定一個最佳的弓形營救區(qū)域(用圖形表示),并說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=x2上存在兩個不同的點M、N,關(guān)于直線y=-kx+對稱,求k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若橢圓的離心率是,則雙曲線的離心率是___________

查看答案和解析>>

同步練習(xí)冊答案