正四面體S—ABC中,E為SA的中點,F(xiàn)為的中心,則直線EF與平面ABC所成的角的正切值是 。
解析試題分析:連接SF,則SF⊥平面ABC.連接AF并延長交BC于H,取線段AF的中點G,連接EG,由E為SA的中點,則EG∥SF,∴EG⊥平面ABC,∴∠EFG即為EF與平面ABC所成的角.
設正四面體的邊長為a,則AH=a,且AF=a,
在Rt△AGE中,AE=a,AG=AF=a,∠EGA=90°,
∴EG=AE2-AG2=a.在Rt△EGF中,F(xiàn)G=AF=a,EG=a,∠EGF=90°,
∴tan∠EFG=
即EF與平面ABC所成的角的正切值是。
考點:本題主要考查立體幾何中幾何體的特征,角的計算。
點評:基礎題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關系、平行關系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,本題中先做出線面角,再證出線面角,最后把角放到一個三角形中解出結果。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com