精英家教網 > 高中數學 > 題目詳情

【題目】已知,給定個整點,其中.

(Ⅰ)當,從上面的個整點中任取兩個不同的整點,求的所有可能值;

(Ⅱ)從上面個整點中任取個不同的整點,.

i)證明:存在互不相同的四個整點,滿足,;

ii)證明:存在互不相同的四個整點,滿足,.

【答案】(Ⅰ);(Ⅱ)(i)詳見解析;(ii)詳見解析.

【解析】

(Ⅰ)列出所有的整點后可得的所有可能值.

(Ⅱ)對于(i),可用反證法,對于(ii),可設直線上選擇了個的點,計算可得諸直線上不同兩點的橫坐標和的不同個數的最小值為,結合中任意不同兩項之和的不同的值恰有個可得至少有一個和出現兩次,從而可證結論成立.

:(Ⅰ)當時,4個整點分別為.

所以的所有可能值.

(Ⅱ)(i)假設不存在互不相同的四個整點,

滿足.

即在直線中至多有一條直線上取多于1個整點,其余每條直線上至多取一個整點, 此時符合條件的整點個數最多為.

,與已知矛盾.

故存在互不相同的四個整點,滿足.

ii)設直線上有個選定的點.

,設上的這個選定的點的橫坐標為,且滿足.

中任意不同兩項之和至少有個不同的值,這對于也成立.

由于中任意不同兩項之和的不同的值恰有個,

,

可知存在四個不同的點,

滿足.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】《孫子算經》是中國古代重要的數學著作.其中的一道題“今有木,方三尺,高三尺,欲方五寸作枕一枚.問:得幾何?”意思是:“有一塊棱長為3尺的正方體方木,要把它作成邊長為5寸的正方體枕頭,可作多少個?”現有這樣的一個正方體木料,其外周已涂上油漆,則從切割后的正方體枕頭中任取一塊,恰有一面涂上油漆的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】學校藝術節(jié)對四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學對這四件參賽作品預測如下:

甲說:作品獲得一等獎”; 乙說:作品獲得一等獎”;

丙說:兩件作品未獲得一等獎”; 丁說:作品獲得一等獎”.

評獎揭曉后,發(fā)現這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是_________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市政府為了引導居民合理用水,決定全面實施階梯水價,居民用水原則上以住宅為單位(一套住宅為一戶).

階梯級別

第一階梯

第二階梯

第三階梯

月用水范圍(噸)

為了了解全市居民月用水量的分布情況,通過抽樣,獲得了戶居民的月用水量(單位:噸),得到統(tǒng)計表如下:

居民用水戶編號

1

2

3

4

5

6

7

8

9

10

用水量(噸)

7

8

8

9

10

11

<>13

14

15

20

1)若用水量不超過噸時,按/噸計算水費;若用水量超過噸且不超過噸時,超過噸部分按/噸計算水費;若用水量超過噸時,超過噸部分按/噸計算水費.試計算:若某居民用水噸,則應交水費多少元?

2)現要在這戶家庭中任意選取戶,求取到第二階梯水量的戶數的分布列與期望;

3)用抽到的戶家庭作為樣本估計全市的居民用水情況,從全市依次隨機抽取戶,若抽到戶月用水量為第一階梯的可能性最大,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,設拋物線C1:的準線1x軸交于橢圓C2的右焦點F2F1C2的左焦點.橢圓的離心率為,拋物線C1與橢圓C2交于x軸上方一點P,連接PF1并延長其交C1于點Q,MC1上一動點,且在PQ之間移動.

1)當取最小值時,求C1C2的方程;

2)若PF1F2的邊長恰好是三個連續(xù)的自然數,當MPQ面積取最大值時,求面積最大值以及此時直線MP的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知非零實數,,不全相等,則下列說法正確的個數是(

1)如果,,成等差數列,則,,能構成等差數列

2)如果,,成等差數列,則,不可能構成等比數列

3)如果,成等比數列,則,能構成等比數列

4)如果,,成等比數列,則,不可能構成等差數列

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四邊形是邊長為2的菱形,且,平面,,,點是線段上任意一點.

(1)證明:平面平面;

(2)若的最大值是,求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】關于函數,下列判斷正確的是( )

A. 有最大值和最小值

B. 的圖象的對稱中心為

C. 上存在單調遞減區(qū)間

D. 的圖象可由的圖象向左平移個單位而得

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知鮮切花的質量等級按照花枝長度進行劃分,劃分標準如下表所示.

花枝長度

鮮花等級

三級

二級

一級

某鮮切花加工企業(yè)分別從甲乙兩個種植基地購進鮮切花,現從兩個種植基地購進的鮮切花中分別隨機抽取30個樣品,測量花枝長度并進行等級評定,所抽取樣品數據如圖所示.

1)根據莖葉圖比較兩個種植基地鮮切花的花枝長度的平均值及分散程度(不要求計算具體值,給出結論即可);

2)若從等級為三級的樣品中隨機選取2個進行新產品試加工,求選取的2個全部來自乙種植基地的概率;

3)根據該加工企業(yè)的加工和銷售記錄,了解到來自乙種植基地的鮮切花的加工產品的單件利潤為4元;來自乙種植基地的鮮切花的加工產品的單件成本為10元,銷售率(某等級產品的銷量與產量的比值)及單價如下表所示.

三級花加工產品

二級花加工產品

一級花加工產品

銷售率

單價/(元/件)

12

16

20

由于鮮切花加工產品的保鮮特點,未售出的產品均可按原售價的50%處理完畢.用樣本估計總體,如果僅從單件產品的利潤的角度考慮,該鮮切花加工企業(yè)應該從哪個種植基地購進鮮切花?

查看答案和解析>>

同步練習冊答案