【題目】如圖,為了測量對岸A,B兩點(diǎn)的距離,沿河岸選取C,D兩點(diǎn),測得CD=2km,∠CDB=∠ADB=30°,∠ACD=60°,∠ACB=45°,求A,B兩點(diǎn)的距離.

【答案】解:∠DAC=180°﹣∠ADB﹣∠BDC﹣∠ACD=60°,CD=2km
∴AC=2,
∠DBC=180°﹣∠BDC﹣∠ACD﹣∠ACB=45°
在△CDB中由正弦定理得:BC=
在△ABC中由余弦定理得:AB2=CB2+AC2﹣2CBACcos∠ACB=2,
∴AB= km.
答:A、B兩點(diǎn)間的距離為 km.
【解析】根據(jù)題中條件先分別求出∠DAC,∠DBC.在△ADC中由正弦定理求得AD,在△CDB中由正弦定理求得DB,最后△ADB中由余弦定理求得AB.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】算法流程圖如圖所示,則輸出的結(jié)果是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解學(xué)校食堂的服務(wù)情況,隨機(jī)調(diào)查了50名就餐的教師和學(xué)生.根據(jù)這50名師生對餐廳服務(wù)質(zhì)量進(jìn)行評分,繪制出了頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組為[40,50),[50,60),…,[90,100].
(1)求頻率分布直方圖中a的值;
(2)從評分在[40,60)的師生中,隨機(jī)抽取2人,求此人中恰好有1人評分在[40,50)上的概率;
(3)學(xué)校規(guī)定:師生對食堂服務(wù)質(zhì)量的評分不得低于75分,否則將進(jìn)行內(nèi)部整頓,試用組中數(shù)據(jù)估計(jì)該校師生對食堂服務(wù)質(zhì)量評分的平均分,并據(jù)此回答食堂是否需要進(jìn)行內(nèi)部整頓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,滿足下列條件的有兩個(gè)的是(
A.
B.
C.a=1,b=2,c=3
D.a=3,b=2,A=60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的不等式ax2+bx+c<0的解集為({﹣∞,﹣1})∪( ,+∞),則不等式cx2﹣bx+a<0的解集為(
A.(﹣1,2)
B.(﹣∞,﹣1)∪(2,+∞)
C.(﹣2,1)
D.(﹣∞,﹣2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , a1=1,且nan+1=(n+2)Sn , n∈N*
(1)求證:數(shù)列 為等比數(shù)列;
(2)求數(shù)列{Sn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下問題:
①求面積為1的正三角形的周長;
②求鍵盤所輸入的三個(gè)數(shù)的算術(shù)平均數(shù);
③求鍵盤所輸入的兩個(gè)數(shù)的最小數(shù);
④求函數(shù)當(dāng)自變量取x0時(shí)的函數(shù)值.
其中不需要用條件語句來描述算法的問題有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .
(1)若對任意的 ,均有 ,求 的取值范圍;
(2)若對任意的 ,均有 ,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)為R上的偶函數(shù),g(x)為R上的奇函數(shù),且f(x)+g(x)=log4(4x+1).
(1)求f(x),g(x)的解析式;
(2)若函數(shù)h(x)=f(x)﹣ 在R上只有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案