直三棱柱ABC-A1B1C1中,AB=5,AC=4,BC=3,AA1=4,D是AB的中點(diǎn).

(1)求證:AC⊥B1C;
(2)求證:AC1∥平面B1CD;
(Ⅰ)證明見解析(Ⅱ)證明見解析.

試題分析:(Ⅰ)要證明“線線垂直”,可通過證明“線面垂直”而得到.
由于在△ABC中,AB=5,AC=4,BC=3,
所以  AC⊥BC.又在直三棱柱ABC-A1B1C1中C C1⊥AC.
因此可得到AC⊥平面B B1C1C.證得AC⊥B1C.
(Ⅱ)證明“線線平行”,往往可通過證明“線線平行”或“面面平行”而得到.
注意連結(jié)BC1,利用DE為△ABC1的中位線,得到 DE// AC1
從而可得AC1∥平面B1CD.
立體幾何中的證明問題,要注意表達(dá)的規(guī)范性及層次性.
試題解析:證明:(Ⅰ)在△ABC中,因?yàn)锳B=5,AC=4,BC=3,
所以AC⊥BC.

因?yàn)橹比庵鵄BC-A1B1C1,所以CC1⊥AC.
因?yàn)锽C∩AC=C,所以AC⊥平面BB1C1C.
所以AC⊥B1C.
(Ⅱ)連結(jié)BC1,交B1C于E.
因?yàn)橹比庵鵄BC-A1B1C1,
所以側(cè)面BB1C1C為矩形,且E為B1C中點(diǎn).
又D是AB中點(diǎn),所以DE為△ABC1的中位線,所以DE//AC1
因?yàn)镈E平面B1CD,AC1平面B1CD,
所以AC1∥平面B1CD.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直三棱柱中,、分別是棱、的中點(diǎn),點(diǎn)在棱上,已知,

(1)求證:平面;
(2)設(shè)點(diǎn)在棱上,當(dāng)為何值時(shí),平面平面?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(如圖1)在平面四邊形中,中點(diǎn),,,且,現(xiàn)沿折起使,得到立體圖形(如圖2),又B為平面ADC內(nèi)一點(diǎn),并且ABCD為正方形,設(shè)F,G,H分別為PB,EB,PC的中點(diǎn).

(1)求三棱錐的體積;
(2)在線段PC上是否存在一點(diǎn)M,使直線與直線所成角為?若存在,求出線段的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題中正確的個(gè)數(shù)是(  ).
(1)若直線上有無數(shù)個(gè)點(diǎn)不在平面內(nèi),則.
(2)若直線與平面平行,則與平面內(nèi)的任意一條直線都平行.
(3)如果兩條平行直線中的一條與一個(gè)平面平行,那么另一條也與這個(gè)平面平行.
(4)若直線與平面平行,則與平面內(nèi)的任意一條直線都沒有公共點(diǎn).
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對(duì)于平面、和直線、、,下列命題中真命題是(    )
A.若,,,,則
B.若,,則
C.若,,,則
D.若,,,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩個(gè)平面垂直,下列命題中:
(1)一個(gè)平面內(nèi)已知直線必垂直于另一個(gè)平面內(nèi)的任意一條直線;
(2)一個(gè)平面內(nèi)已知直線必垂直于另一個(gè)平面內(nèi)的無數(shù)條直線;
(3)一個(gè)平面內(nèi)的任意一條直線必垂直于另一個(gè)平面;
(4)過一個(gè)平面內(nèi)任意一點(diǎn)作交線的垂線,則此垂線必垂直于另一個(gè)平面.
其中正確命題的個(gè)數(shù)有(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

三棱柱中,、所成角均為,且,則三棱錐的體積為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是兩條不同直線,,是兩個(gè)不同平面,則下列命題錯(cuò)誤的是(   )
A.若,,則B.若,,則
C.若,,則D.若,,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方體ABCDA1B1C1D1的棱長(zhǎng)為4,M為BD1的中點(diǎn),N在A1C1上,且|A1N|=3|NC1|,則MN的長(zhǎng)為   .

查看答案和解析>>

同步練習(xí)冊(cè)答案