已知命題: P:對任意,不等式恒成立;

q:函數(shù)存在極大值和極小值。

求使命題“pq”為真命題的m的取值范圍。

m的取值范圍為[2,6].


解析:

恒成立,

只需小于的最小值,   而當(dāng)時,≥3,

.

存在極大值與極小值,

有兩個不等的實根,

,

.

要使命題“pq”為真,只需,故m的取值范圍為[2,6].

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題:P:對任意a∈[1,2],不等式|m-5|≤
a2+8
恒成立;q:函數(shù)f(x)=x3+mx2+(m+6)x+1存在極大值和極小值.求使命題“p且q”為真命題的m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下四個命題,所有真命題的序號為
 

①從總體中抽取的樣本(x1,y1),(x2,y2),L,(xn,yn),若記
.
x
=
1
n
i=1nxi,
.
y
=
1
n
i=1nyi,則回歸直線y=bx+a必過點(
.
x
,
.
y

②將函數(shù)y=cos2x的圖象向右平移
π
3
個單位,得到函數(shù)y=sin(2x-
π
6
)
的圖象;
③已知數(shù)列an,那么“對任意的n∈N*,點Pn(n,aa)都在直線y=2x+1上”是{an}為等差數(shù)列的“充分不必要條件”
④命題“若x≥2,則x≥2或x≤-2”的否命題是“若{x}≥2,則-2<x<2”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江西省贛州市十一縣(市)2011-2012學(xué)年高二下學(xué)期期中聯(lián)考數(shù)學(xué)文科試題 題型:013

已知命題:p:“對任意x∈[1,2],x2-a≥0”,命題q:“存在x∈R,x2+2ax+2-a=0”,若“pq”是真命題,則實數(shù)a的取值范圍是

[  ]

A.{a|a≤-2或a=1}

B.{a|a≥1}

C.{a|a≤-2或1≤a≤2}

D.{a|-2≤a≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東省月考題 題型:解答題

已知命題:p:對任意a∈[1,2],不等式恒成立;
q:函數(shù)f(x)=x3+mx2+(m+6)x+1存在極大值和極小值;
求使命題“p且q”為真命題的m的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案