【題目】已知橢圓C的中心在原點(diǎn),一個(gè)焦點(diǎn)F(﹣2,0),且長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的比是
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)M(m,0)在橢圓C的長(zhǎng)軸上,點(diǎn)P是橢圓上任意一點(diǎn).當(dāng) 最小時(shí),點(diǎn)P恰好落在橢圓的右頂點(diǎn),求實(shí)數(shù)m的取值范圍.

【答案】
(1)解:設(shè)橢圓C的方程為

由題意

解得a2=16,b2=12.

所以橢圓C的方程為


(2)解:設(shè)P(x,y)為橢圓上的動(dòng)點(diǎn),由于橢圓方程為 ,故﹣4≤x≤4.

因?yàn)?

所以 =

因?yàn)楫?dāng) 最小時(shí),點(diǎn)P恰好落在橢圓的右頂點(diǎn),

即當(dāng)x=4m時(shí), 取得最小值.而x∈[﹣4,4],

故有4m≥4,解得m≥1.

又點(diǎn)M在橢圓的長(zhǎng)軸上,即﹣4≤m≤4.

故實(shí)數(shù)m的取值范圍是m∈[1,4]


【解析】(Ⅰ)設(shè)橢圓C的標(biāo)準(zhǔn)方程,根據(jù)焦點(diǎn)坐標(biāo)和長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的比聯(lián)立方程求得a和b,進(jìn)而可得橢圓的方程.(Ⅱ)設(shè)P(x,y)為橢圓上的動(dòng)點(diǎn),根據(jù)橢圓的性質(zhì)可判斷x的范圍.代入 判斷因?yàn)楫?dāng) 最小時(shí),點(diǎn)P恰好落在橢圓的右頂點(diǎn),

進(jìn)而求得m的范圍.點(diǎn)M在橢圓的長(zhǎng)軸上進(jìn)而推脫m的最大和最小值.綜合可得m的范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓經(jīng)過點(diǎn), 且圓心在直線.

(1)求圓的方程;

(2)過點(diǎn)的直線與圓交于兩點(diǎn),問在直線上是否存在定點(diǎn),使得恒成立?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則下列說法正確的(
A.a∈(2,4),輸出的i的值為5
B.a∈(4,5),輸出的i的值為5
C.a∈(3,4),輸出的i的值為5
D.a∈(2,4),輸出的i的值為5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

①如果不同直線都平行于平面,則一定不相交;

②如果不同直線都垂直于平面,則一定平行;

③如果平面互相平行,若直線,直線,則;

④如果平面互相垂直,且直線也互相垂直,若,則;

其中正確的個(gè)數(shù)為( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l1的參數(shù)方程為 ,(t為參數(shù)),直線l2的參數(shù)方程為 ,(m為參數(shù)).設(shè)l1與l2的交點(diǎn)為P,當(dāng)k變化時(shí),P的軌跡為曲線C.
(1)寫出C的普通方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,設(shè)l3:ρ(cosθ+sinθ)﹣ =0,M為l3與C的交點(diǎn),求M的極徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的定義域?yàn)?/span>,如果存在實(shí)數(shù) 使得對(duì)任意滿足恒成立,則稱為廣義奇函數(shù).

(Ⅰ)設(shè)函數(shù),試判斷是否為廣義奇函數(shù),并說明理由;

(Ⅱ)設(shè)函數(shù),其中常數(shù) ,證明是廣義奇函數(shù),并寫出的值;

是定義在上的廣義奇函數(shù),且函數(shù)的圖象關(guān)于直線為常數(shù))對(duì)稱,試判斷是否為周期函數(shù)若是,求出的一個(gè)周期,若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓心在直線上的圓經(jīng)過點(diǎn),但不經(jīng)過坐標(biāo)原點(diǎn),并且直線與圓相交所得的弦長(zhǎng)為4.

(1)求圓的一般方程;

(2)若從點(diǎn)發(fā)出的光線經(jīng)過軸反射,反射光線剛好通過圓的圓心,求反射光線所在的直線方程(用一般式表達(dá)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,MD⊥平面ABCD,NB∥MD,且AD=2,NB=1,CD=MD=3.

(1)過B作平面BFG∥平面MNC,平面BFG與CD、DM分別交于F、G,求AF與平面MNC所成角的正弦值;
(2)E為直線MN上一點(diǎn),且平面ADE⊥平面MNC,求 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案