精英家教網 > 高中數學 > 題目詳情

【題目】在直角坐標系 中,以原點 為極點,以 軸正半軸為極軸,建立極坐標系,曲線 的極坐標方程為 ,曲線 的參數方程為
(1)求曲線 的直角坐標方程與曲線 的普通方程;
(2)試判斷曲線 是否存在兩個交點?若存在,求出兩交點間的距離;若不存在,說明理由.

【答案】
(1)解:對于曲線 : ,得 ,故有 ,對于曲線 : ,消去參數得 .
(2)解:顯然曲線 : 為直線,則其參數方程可寫為 ( 為參數),與曲線 : 聯立方程組得 ,可知 ,所以 與 存在兩個交點,

, ,得 .


【解析】本題主要考查了橢圓的參數方程、參數的意義,解決問題的關鍵是利用直線的參數方程的幾何意義求解直線與曲線交點的距離等內容.意在考查轉化與化歸能力、基本運算能力,方程思想與數形結合思想.
【考點精析】認真審題,首先需要了解橢圓的參數方程(橢圓的參數方程可表示為).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設雙曲線與橢圓 =1有相同的焦點,且與橢圓相交,一個交點A的縱坐標為4,求:
(1)雙曲線的標準方程.
(2)若直線L過A(﹣1,2),且與雙曲線漸近線y=kx(k>0)垂直,求直線L的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知Sn是等差數列{an}的前n項和,公差為d,且S2015>S2016>S2014 , 下列五個命題:①d>0;②S4029>0;③S4030<0;④數列{Sn}中的最大項為S2015;⑤|a2015|>|a2016|.
其中正確結論的序號是 . (寫出所有正結論的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】把函數y=sinx的圖象上所有點的橫坐標都縮小到原來的一半,縱坐標保持不變,再把圖象向左平移 個單位,這時對應于這個圖象的解析式為( )
A.y=cos2x
B.y=﹣sin2x
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 的左、右焦點分別為F1、F2 , 短軸兩個端點為A、B,且四邊形F1AF2B是邊長為2的正方形.
(1)求橢圓的方程;
(2)若C、D分別是橢圓長的左、右端點,動點M滿足MD⊥CD,連接CM,交橢圓于點P.證明: 為定值.
(3)在(2)的條件下,試問x軸上是否存異于點C的定點Q,使得以MP為直徑的圓恒過直線DP、MQ的交點,若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國南北朝數學家何承天發(fā)明的“調日法”是程序化尋求精確分數來表示數值的算法,其理論依據是:設實數x的不足近似值和過剩近似值分別為 (a,b,c,d∈N*),則 是x的更為精確的不足近似值或過剩近似值.我們知道π=3.14159…,若令 <π< ,則第一次用“調日法”后得 是π的更為精確的過剩近似值,即 <π< ,若每次都取最簡分數,那么第四次用“調日法”后可得π的近似分數為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙兩位學生參加數學競賽培訓,在培訓期間,他們參加的5次預賽成績記錄如下:

82

82

79

95

87

95

75

80

90

85


(1)請用莖葉圖表示這兩組數據;
(2)從甲、乙兩人的成績中各隨機抽取一個,求甲的成績比乙高的概率;
(3)現要從中選派一人參加9月份的全國數學聯賽,從統(tǒng)計學的角度考慮,你認為選派哪位學生參加合適?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列各組函數是同一函數的是(
①f(x)= 與g(x)=x ;
②f(x)=|x|與g(x)=
③f(x)=x0與g(x)= ;
④f(x)=x2﹣2x﹣1與g(t)=t2﹣2t﹣1.
A.①②③
B.①③④
C.②③④
D.①②④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,棱長為2的正方體ABCD﹣A1B1C1D1中,E為邊AA1的中點,P為側面BCC1B1上的動點,且A1P∥平面CED1 . 則點P在側面BCC1B1軌跡的長度為(

A.2
B.
C.
D.

查看答案和解析>>

同步練習冊答案