精英家教網 > 高中數學 > 題目詳情

【題目】在四棱錐中,底面ABCD是矩形,平面ABCD,,E,F是線段BC,AB的中點.

證明:;

在線段PA上確定點G,使得平面PED,請說明理由.

【答案】1)見解析(2)見解析

【解析】

1)由PA⊥平面ABCD先證明DEPA.連接AE,由勾股定理證明DEAE,通過證明DE⊥平面PAE,即可得證PEED

2)過點FFHEDAD于點H,再過點HHGDPPA于點G,通過證明平面平面平面PED,然后證明平面PED

解:1證明:由平面ABCD,得連接AE

因為,

所以由勾股定理可得

所以平面PAE,

因此

2過點FAD于點H,則平面PED,且有

再過點HPA于點G,則平面PED,且

由面面平行的判定定理可得平面平面PED,

進而由面面平行的性質得到平面PED,

從而確定G點位置

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】將現有名男生和名女生站成一排照相.(用數字作答)

(1)兩女生相鄰,有多少種不同的站法?

(2)兩名女生不相鄰,有多少種不同的站法?

(3)女生甲不在左端,女生乙不在右端,有多少種不同的站法?

(4)女生甲要在女生乙的右方(可以不相鄰)有多少種不同的站法?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是函數y=Asin(ωx+φ)(A<0,ω>0,|φ|≤ )圖象的一部分.為了得到這個函數的圖象,只要將y=sinx(x∈R)的圖象上所有的點(
A.向左平移 個單位長度,再把所得各點的橫坐標縮短到原來的 倍,縱坐標不變
B.向左平移 個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變
C.向左平移 個單位長度,再把所得各點的橫坐標縮短到原來的 倍,縱坐標不變
D.向左平移 個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2asinωxcosωx+2 cos2ωx﹣ (a>0,ω>0)的最大值為2,且最小正周期為π. (I)求函數f(x)的解析式及其對稱軸方程;
(II)若f(α)= ,求sin(4α+ )的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某產品的廣告費用x與銷售額y的統(tǒng)計數據如表:

廣告費用x(萬元)

1

2

4

5

銷售額y(萬元)

6

14

28

32

根據上表中的數據可以求得線性回歸方程 = x+ 中的 為6.6,據此模型預報廣告費用為10萬元時銷售額為(
A.66.2萬元
B.66.4萬元
C.66.8萬元
D.67.6萬元

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了調查甲、乙兩個網站受歡迎的程度,隨機選取了14,統(tǒng)計上午8:00~10:00各自的點擊量,得到如圖所示的莖葉圖,根據莖葉圖回答下列問題.

(1)甲、乙兩個網站點擊量的極差分別是多少?

(2)甲網站點擊量在[10,40]間的頻率是多少?

(3)甲、乙兩網站哪個更受歡迎?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】△ABC的內角A,B,C所對的邊分別為a,b,c,已知1+ = . (I)求A;
(Ⅱ)若BC邊上的中線AM=2 ,高線AH= ,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,點是直線上的動點,定點 的中點,動點滿足.

(1)求點的軌跡的方程

(2)過點的直線交軌跡兩點,上任意一點,直線兩點,以為直徑的圓是否過軸上的定點? 若過定點,求出定點的坐標;若不過定點,說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐PABC中,PAAB,PABCABBC,PAABBC=2,D為線段AC的中點,E為線段PC上一點.

(1)求證:PABD

(2)求證:平面BDE平面PAC;

(3)PA平面BDE時,求三棱錐EBCD的體積.

查看答案和解析>>

同步練習冊答案