【題目】已知點A,B,C的坐標分別為A(3,0),B(0,3),C(cos α,sin α),α∈.
(1)若||=||,求角α的值;
(2)若=-1,求的值.
【答案】(1)α=;(2)-.
【解析】試題分析:(1)根據兩向量的模相等,利用兩點間的距離公式建立等式求得tanα的值,根據α的范圍求得α.
(2)根據向量的基本運算根據=-1,求得sin +cos =,然后同角和與差的關系可得到2sin cos =-,化簡代入即可.
試題解析:
(1)∵=(cos -3,sin ),=(cos ,sin -3),
∴||=,
||=.
由||=||,得sin =cos .
又∵∈,∴ =.
(2)由=-1,得(cos -3)cos +sin (sin -3)=-1.
∴sin +cos =. ①
又=2sin cos .
由①式兩邊平方,得1+2sin cos =,
∴2sin cos =-.
∴=-.
科目:高中數學 來源: 題型:
【題目】已知橢圓的兩個焦點是和,并且經過點,拋物線的頂點在坐標原點,焦點恰好是橢圓的右頂點.
(Ⅰ)求橢圓和拋物線的標準方程;
(Ⅱ)已知點為拋物線內一個定點,過作斜率分別為的兩條直線交拋物線于點,且分別是的中點,若,求證:直線過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于數列{an},定義 為{an}的“優(yōu)值”,現在已知某數列{an}的“優(yōu)值” ,記數列{an﹣kn}的前n項和為Sn , 若Sn≤S5對任意的n∈N+恒成立,則實數k的最大值為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 的部分圖象如圖所示.
(1)求f(x)的解析式;
(2)求f(x)的單調遞增區(qū)間和對稱中心坐標;
(3)將f(x)的圖象向左平移 個單位,再講橫坐標伸長到原來的2倍,縱坐標不變,最后將圖象向上平移1個單位,得到函數g(x)的圖象,求函數y=g(x)在 上的最大值和最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線: 恒過定點,圓經過點和點,且圓心在直線上.
(1)求定點的坐標;
(2)求圓的方程;
(3)已知點為圓直徑的一個端點,若另一個端點為點,問:在軸上是否存在一點,使得為直角三角形,若存在,求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知兩直線l1:mx+8y+n=0和l2:2x+my﹣1=0,試確定m,n的值,使
(1)l1與l2相交于點P(m,﹣1);
(2)l1∥l2;
(3)l1⊥l2 , 且l1在y軸上的截距為﹣1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,曲線: ,曲線: (為參數),以坐標原點為極點, 軸正半軸為極軸,建立極坐標系.
(Ⅰ)求曲線, 的極坐標方程;
(Ⅱ)曲線: (為參數, , )分別交, 于, 兩點,當取何值時, 取得最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓和點,動圓經過點且與圓相切,圓心的軌跡為曲線
(1)求曲線的方程;
(2)點是曲線與軸正半軸的交點,點在曲線上,若直線的斜率滿足求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在極坐標系中,曲線的極坐標方程是,以極點為原點,極軸為軸正半軸(兩坐標系取相同的單位長度)的直角坐標系中,曲線的參數方程為:(為參數).
(1)求曲線的直角坐標方程與曲線的普通方程;
(2)將曲線經過伸縮變換后得到曲線,若分別是曲線和曲線上的動點,求的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com