【題目】若正實(shí)數(shù)a,b滿足 + = ,則ab+a+b的最小值為

【答案】6 +14
【解析】解:∵ + = ,∴3(a+1)+3(b+2)=(a+1)(b+2),

∴ab=a+2b+7,

a= ,∵a,b都是正數(shù),∴b>1.

∴ab+a+b=a+2b+7+a+b=2a+3b+7= +3b+7

= =3(b﹣1)+ +14≥2 +14=6 +14.

當(dāng)且僅當(dāng)3(b﹣1)= 即b= +1時取等號,此時a=2+

所以答案是:6 +14.

【考點(diǎn)精析】利用函數(shù)的最值及其幾何意義對題目進(jìn)行判斷即可得到答案,需要熟知利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲担焕脠D象求函數(shù)的最大(。┲担焕煤瘮(shù)單調(diào)性的判斷函數(shù)的最大(。┲担

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了檢測某種產(chǎn)品的質(zhì)量(單位:千克),抽取了一個容量為N的樣本,整理得到的數(shù)據(jù)作出了頻率分布表和頻率分布直方圖如圖:

分組

頻數(shù)

頻率

[17.5,20)

10

0.05

[20,225)

50

0.25

[22.5,25)

a

b

[25,27.5)

40

c

[27.5,30]

20

0.10

合計(jì)

N

1

(Ⅰ)求出表中N及a,b,c的值;
(Ⅱ)求頻率分布直方圖中d的值;
(Ⅲ)從該產(chǎn)品中隨機(jī)抽取一件,試估計(jì)這件產(chǎn)品的質(zhì)量少于25千克的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sinxcosx﹣cos2x+ ,(x∈R).
(1)若對任意x∈[﹣ , ],都有f(x)≥a,求a的取值范圍;
(2)若先將y=f(x)的圖象上每個點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,然后再向左平移 個單位得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)﹣ 在區(qū)間[﹣2π,4π]內(nèi)的所有零點(diǎn)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(1,2), =(cosα,sinα),設(shè) = +t (t為實(shí)數(shù)).
(1)若 ,求當(dāng)| |取最小值時實(shí)數(shù)t的值;
(2)若 ,問:是否存在實(shí)數(shù)t,使得向量 和向量 的夾角為 ,若存在,請求出t;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖四棱錐E﹣ABCD中,四邊形ABCD為平行四邊形,△BCE為等邊三角形,△ABE是以∠A為直角的等腰直角三角形,且AC=BC. (Ⅰ)證明:平面ABE⊥平面BCE;
(Ⅱ)求二面角A﹣DE﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA⊥平面ABCD,AD∥BC,AD=2BC,AB⊥BC,點(diǎn)E為PD中點(diǎn).
(1)求證:AB⊥PD;
(2)求證:CE∥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若f(x)=sin(2x+φ)+ cos(2x+φ)(0<φ<π)是R上的偶函數(shù),則φ=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ)+B,A>0,ω>0,|φ|< 在某一個周期的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如表:

ωx+φ

0

π

x

x1

x2

x3

Asin(ωx+φ)+B

0

0

0


(1)請求出上表中的x1 , x2 , x3 , 并直接寫出函數(shù)f(x)的解析式;
(2)若3sin2 mf( )≥m+2對任意x∈[0,2π]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑,如圖,網(wǎng)格紙上正方形小格的邊長為1,圖中粗線畫出的是某幾何體毛坯的三視圖,第一次切削,將該毛坯得到一個表面積最大的長方體,第二次切削沿長方體的對角面刨開,得到兩個三棱柱,第三次切削將兩個三棱柱分別沿棱和表面的對角線刨開得到兩個鱉臑和兩個陽馬,則陽馬與鱉臑的體積之比為(
A.3:1
B.2:1
C.1:1
D.1:2

查看答案和解析>>

同步練習(xí)冊答案