【題目】設(shè)函數(shù)f(x)=|2x+1|﹣|x﹣4|.
(1)解不等式f(x)>0;
(2)若f(x)+3|x﹣4|≥m對(duì)一切實(shí)數(shù)x均成立,求m的取值范圍.

【答案】
(1)解:當(dāng)x≥4時(shí),f(x)=2x+1﹣(x﹣4)=x+5>0,

得x>﹣5,所以x≥4成立;

當(dāng)﹣ ≤x<4時(shí),f(x)=2x+1+x﹣4=3x﹣3>0,

得x>1,所以1<x<4成立;

當(dāng)x<﹣ 時(shí),f(x)=﹣x﹣5>0,得x<﹣5,所以x<﹣5成立.

綜上,原不等式的解集為{x|x>1或x<﹣5}


(2)解:令F(x)=f(x)+3|x﹣4|=|2x+1|+2|x﹣4|

≥|2x+1﹣(2x﹣8)|=9,

當(dāng)﹣ 時(shí)等號(hào)成立.

即有F(x)的最小值為9,

所以m≤9.

即m的取值范圍為(﹣∞,9]


【解析】(1)對(duì)x討論,分當(dāng)x≥4時(shí),當(dāng)﹣ ≤x<4時(shí),當(dāng)x<﹣ 時(shí),分別解一次不等式,再求并集即可;(2)運(yùn)用絕對(duì)值不等式的性質(zhì),求得F(x)=f(x)+3|x﹣4|的最小值,即可得到m的范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (α為參數(shù))
(1)求曲線C的普通方程;
(2)在以O(shè)為極點(diǎn),x正半軸為極軸的極坐標(biāo)系中,直線l方程為 ρsin( ﹣θ)+1=0,已知直線l與曲線C相交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐P﹣ABCD中,底面ABCD為矩形, 為BC的中點(diǎn),連接AE,BD,交點(diǎn)H,PH⊥平面ABCD,M為PD的中點(diǎn).
(1)求證:平面MAE⊥平面PBD;
(2)設(shè)PE=1,求二面角M﹣AE﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中的假命題是(
A.x0∈(0,+∞),x0<sinx0
B.x∈(﹣∞,0),ex>x+1
C.x>0,5x>3x
D.x0∈R,lnx0<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=2,BC= AD=1,CD=
(1)求證:平面PQB⊥平面PAD;
(2)若二面角M﹣BQ﹣C為30°,設(shè)PM=tMC,試確定t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在斜三梭柱ABC﹣A1B1C1中,側(cè)面AA1C1C是菱形,AC1與A1C交于點(diǎn)O,E是棱AB上一點(diǎn),且OE∥平面BCC1B1
(1)求證:E是AB中點(diǎn);
(2)若AC1⊥A1B,求證:AC1⊥BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正四棱錐P﹣ABCD中,PA=AB=2,點(diǎn)M,N分別在PA,BD上,且 =
(1)求異面直線MN與PC所成角的大;
(2)求二面角N﹣PC﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖的程序框圖,若輸入k的值為3,則輸出S的值為(
A.10
B.15
C.18
D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)F在y軸正半軸上,過(guò)點(diǎn)F的直線交拋物線于A,B兩點(diǎn),線段AB的長(zhǎng)是8,AB的中點(diǎn)到x軸的距離是3.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)設(shè)直線m在y軸上的截距為6,且與拋物線交于P,Q兩點(diǎn),連結(jié)QF并延長(zhǎng)交拋物線的準(zhǔn)線于點(diǎn)R,當(dāng)直線PR恰與拋物線相切時(shí),求直線m的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案