已知E(2,2)是拋物線C:y2=2px上一點(diǎn),經(jīng)過點(diǎn)(2,0)的直線l與拋物線C交于A,B兩點(diǎn)(不同于點(diǎn)E),直線EA,EB分別交直線-2于點(diǎn)M,N.
(1)求拋物線方程及其焦點(diǎn)坐標(biāo);
(2)已知O為原點(diǎn),求證:以MN為直徑的圓恰好經(jīng)過原點(diǎn).
【答案】分析:(1)將E(2,2)代入y2=2px,可得拋物線方程及其焦點(diǎn)坐標(biāo);
(2)設(shè)出直線方程代入拋物線方程,利用韋達(dá)定理及向量知識(shí),計(jì)算=0,即可得到結(jié)論.
解答:(1)解:將E(2,2)代入y2=2px,得p=1
所以拋物線方程為y2=2x,焦點(diǎn)坐標(biāo)為
(2)證明:設(shè),,M(xM,yM),N(xN,yN),
設(shè)直線l方程為x=my+2,與拋物線方程聯(lián)立,消去x,得:y2-2my-4=0
則由韋達(dá)定理得:y1y2=-4,y1+y2=2m
直線AE的方程為:,即,
令x=-2,得
同理可得:
=4+yMyN=4+=4+=0
∴OM⊥ON,即∠MON為定值
點(diǎn)評(píng):本題考查拋物線方程,考查直線與拋物線的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知P(x0,y0)是拋物線y2=2px(p>0)上的一點(diǎn),過P點(diǎn)的切線方程的斜率可通過如下方式求得:
在y2=2px兩邊同時(shí)對(duì)x求導(dǎo),得:2yy′=2p,則y′=
p
y
,所以過P的切線的斜率:k=
p
y0
試用上述方法求出雙曲線x2-
y2
2
=1
P(
2
2
)
處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P(x,y)是拋物線y2=-8x的準(zhǔn)線與雙曲線
x2
8
-
y2
2
=1
的兩條漸近線所圍成的三角形平面區(qū)域內(nèi)(含邊界)的任意一點(diǎn),則z=
y+2
x
的范圍是
[
1
2
, +∞)
[
1
2
, +∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東省濟(jì)寧市金鄉(xiāng)二中2012屆高三11月月考數(shù)學(xué)文科試題 題型:044

已知雙曲線C:的一個(gè)焦點(diǎn)是拋物線y2=2x的焦點(diǎn),且雙曲線C經(jīng)過點(diǎn)(1,),又知直線l:y=kx+1與雙曲線C相交于A、B兩點(diǎn).

(1)求雙曲線C的方程;

(2)若,求實(shí)數(shù)k值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(m,3)是拋物線y=x2+4x+n上距點(diǎn)?A(-2,0)最近一點(diǎn),則m+n等于(    )

A.1                      B.3                   C.5                      D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:九江模擬 題型:填空題

已知P(x0,y0)是拋物線y2=2px(p>0)上的一點(diǎn),過P點(diǎn)的切線方程的斜率可通過如下方式求得:
在y2=2px兩邊同時(shí)對(duì)x求導(dǎo),得:2yy′=2p,則y′=
p
y
,所以過P的切線的斜率:k=
p
y0
試用上述方法求出雙曲線x2-
y2
2
=1
P(
2
,
2
)
處的切線方程為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案