某學(xué)校的籃球隊(duì)、羽毛球隊(duì)、乒乓球隊(duì)各有10名隊(duì)員,某些隊(duì)員不止參加了一支球隊(duì),具體情況如圖所示,現(xiàn)從中隨機(jī)抽取一名隊(duì)員,求:

(1)該隊(duì)員只屬于一支球隊(duì)的概率;
(2)該隊(duì)員最多屬于兩支球隊(duì)的概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某市公租房的房源位于三個(gè)片區(qū),設(shè)每位申請人只申請其中一個(gè)片區(qū)的房源,且申請其中任一個(gè)片區(qū)的房源是等可能的,求該市的任4位申請人中:
(1)恰有2人申請片區(qū)房源的概率;
(2)申請的房源所在片區(qū)的個(gè)數(shù)的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在高中“自選模塊”考試中,某考場的每位同學(xué)都選了一道數(shù)學(xué)題,第一小組選《數(shù)學(xué)史與不等式選講》的有1人,選《矩陣變換和坐標(biāo)系與參數(shù)方程》的有5人,第二小組選《數(shù)學(xué)史與不等式選講》的有2人,選《矩陣變換和坐標(biāo)系與參數(shù)方程》的有4人,現(xiàn)從第一、第二兩小組各任選2人分析得分情況.
(1)求選出的4人均為選《矩陣變換和坐標(biāo)系與參數(shù)方程》的概率;
(2)設(shè)X為選出的4個(gè)人中選《數(shù)學(xué)史與不等式選講》的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩名射手各打了10發(fā)子彈,其中甲擊中環(huán)數(shù)與次數(shù)如下表

環(huán)數(shù)
5
6
7
8
9
10
次數(shù)
1
1
1
1
2
4
乙射擊的概率分布列如表
環(huán)數(shù)
7
8
9
10
概率
0.2
0.3
p
0.1
(1)若甲,乙兩人各打一槍,求共擊中18環(huán)的概率及p的值;
(2)比較甲,乙兩人射擊水平的優(yōu)劣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1號箱中有2個(gè)白球和4個(gè)紅球,2號箱中有5個(gè)白球和3個(gè)紅球,現(xiàn)隨機(jī)地從1號箱中取出一球放入2號箱,然后從2號箱隨機(jī)取出一球,問從2號箱取出紅球的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

袋中有4個(gè)紅球,3個(gè)黑球,從袋中隨機(jī)地抽取4個(gè)球,設(shè)取到1個(gè)紅球得2分,取到1個(gè)黑球得1分.
(1)求得分X的分布列;(2)求得分大于6的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知A、B、C三個(gè)箱子中各裝有2個(gè)完全相同的球,每個(gè)箱子里的球,有一個(gè)球標(biāo)著號碼1,另一個(gè)球標(biāo)著號碼2,現(xiàn)從A、B、C三個(gè)箱子中各摸出1個(gè)球.
(1) 若用數(shù)組(x,y,z)中的x、y、z分別表示從A、B、C三個(gè)箱子中摸出的球的號碼,請寫出數(shù)組(x,y,z)的所有情形,并回答一共有多少種;
(2) 如果猜測摸出的這三個(gè)球的號碼之和,猜中有獎(jiǎng),那么猜什么數(shù)獲獎(jiǎng)的可能性最大?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

下表中有三個(gè)游戲規(guī)則,袋子中分別裝有大小相同的球,從袋子中取球,分別計(jì)算甲獲勝的概率,說明哪個(gè)游戲是公平的?

游戲1
 
游戲2
 
游戲3
 
1個(gè)紅球和1個(gè)白球
 
2個(gè)紅球和2個(gè)白球
 
3個(gè)紅球和1個(gè)白球
 
取1個(gè)球
 
取1個(gè)球,再取1個(gè)球
 
取1個(gè)球,再取1個(gè)球
 
取出的球是紅球→甲勝
 
取出的兩個(gè)球同色→甲勝
 
取出的兩個(gè)球同色→甲勝
 
取出的球是白球→乙勝
 
取出的兩個(gè)球不同色→乙勝
 
取出的兩個(gè)球不同色→乙勝
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

袋內(nèi)裝有6個(gè)球,這些球依次被編號為1、2、3、……、6,設(shè)編號為n的球重n2-6n+12(單位:克),這些球等可能地從袋里取出(不受重量、編號的影響).
(1)從袋中任意取出一個(gè)球,求其重量大于其編號的概率;
(2)如果不放回地任意取出2個(gè)球,求它們重量相等的概率.

查看答案和解析>>

同步練習(xí)冊答案