Sk=+++…+,則Sk+1為                  (   )

(A)Sk+                (B)Sk++

(C)Sk+         (D)Sk+

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前三項為a-1,4,2a,記前n項和為Sn
(Ⅰ)設Sk=2550,求a和k的值;
(Ⅱ)設bn=
Snn
,求b3+b7+b11+…+b4n-1的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}滿足a1=0,a2=2,an+2=(1+cos2
2
)an+4sin2
2
,n=1,2,3,…
,
(Ⅰ)求a3,a4,并求數(shù)列{an}的通項公式;
(Ⅱ)設Sk=a1+a3+…+a2k-1,Tk=a2+a4+…+a2kWk=
2Sk
2+Tk
(k∈N*)
,求使Wk>1的所有k的值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設Sk=
1
k+1
+
1
k+2
+…+
1
2k
,那么Sk+1=Sk+
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設Sk=
1
k+1
+
1
k+2
+
1
k+3
+…+
1
2k
,則Sk+1為( 。
A、Sk+
1
2(k+1)
B、Sk+
1
2k+1
+
1
2(k+1)
C、Sk+
1
2k+1
-
1
2(k+1)
D、Sk+
1
2(k+1)
-
1
2k+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}與{bn}滿足:bnan+an+1+bn+1an+2=0,bn=
3+(-1)n
2
,n∈N*,且a1=2,a2=4.
(Ⅰ)求a3,a4,a5的值;
(Ⅱ)設cn=a2n-1+a2n+1,n∈N*,證明:{cn}是等比數(shù)列;
(Ⅲ)設Sk=a2+a4+…+a2k,k∈N*,證明:
4n
k=1
Sk
ak
7
6
(n∈N*)

查看答案和解析>>

同步練習冊答案