【題目】某省確定從2021年開始,高考采用“”的模式,取消文理分科,即“3”包括語文、數(shù)學、英語,為必考科目:“1”表示從物理、歷史中任選一門;“2”則是從生物、化學、地理、政治中選擇兩門,共計六門考試科目.某高中從高一年級2000名學生(其中女生900人)中,采用分層抽樣的方法抽取名學生進行調(diào)查.
(1)已知抽取的名學生中含男生110人,求的值及抽取到的女生人數(shù);
(2)學校計劃在高二上學期開設(shè)選修中的“物理”和“歷史”兩個科目,為了了解學生對這兩個科目的選課情況,對在(1)的條件下抽取到的名學生講行問卷調(diào)查(假定每名學生在這兩個科目中必須選擇一個科目且只能選擇一個科目).下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表,請將列聯(lián)表補充完整,并判斷是否有的把握認為選擇科目與性別有關(guān)?說明你的理由;
性別 | 選擇物理 | 選擇歷史 | 總計 |
男生 | 50 | ||
女生 | 30 | ||
總計 |
(3)在(2)的條件下,從抽取的選擇“物理”的學生中按分層抽樣抽取6人,再從這6名學生中抽取2人,對“物理”的選課意向作深入了解,求2人中至少有1名女生的概率.
參考公式:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1),; (2)有的把握認為選擇科目與性別有關(guān); (3).
【解析】
(1)根據(jù)分層抽樣的特點,求出的值和抽取到的女生的人數(shù).
(2)補全列聯(lián)表,然后將相應(yīng)的值代入到公式中,得到結(jié)果,然后做出判斷.
(3)將所有情況列出,然后找到符合要求的情況,根據(jù)古典概型公式,求出概率.
(1)因為,所以,女生人數(shù)為.
(2)列聯(lián)表為:
性別 | 選擇物理 | 選擇歷史 | 總計 |
男生 | 60 | 50 | 110 |
女生 | 30 | 60 | 90 |
總計 | 90 | 110 | 200 |
的觀測值,
所以有的把握認為選擇科目與性別有關(guān).
(3)從90個選擇物理的學生中采用分層抽樣的方法抽6名,這6名學生中有4名男生,記為,,,;2名女生記為,.
抽取2人所有的情況為、、、、、、、、、、、、、、,共15種,選取的2人中至少有1名女生情況的有、、、、、、、、,共9種,
故所求概率為.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的頂點在原點,過點A(-4,4)且焦點在x軸.
(1)求拋物線方程;
(2)直線l過定點B(-1,0)與該拋物線相交所得弦長為8,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】公歷月日為我國傳統(tǒng)清明節(jié),清明節(jié)掃墓我們都要獻鮮花,某種鮮花的價格會隨著需求量的增加而上升.一個批發(fā)市場向某地商店供應(yīng)這種鮮花,具體價格統(tǒng)計如下表所示
日供應(yīng)量(束) | ||||||
單位(元) |
(I)根據(jù)上表中的數(shù)據(jù)進行判斷,函數(shù)模型與哪一個更適合于體現(xiàn)日供應(yīng)量與單價之間的關(guān)系;(給出判斷即可,不必說明理由)
(II)根據(jù)(I)的判斷結(jié)果以及參考數(shù)據(jù),建立關(guān)于的回歸方程;
(III)該地區(qū)有個商店,其中個商店每日對這種鮮花的需求量在束以下,個商店每日對這種鮮花的需求量在束以上,則從這個商店個中任取個進行調(diào)查,求恰有個商店對這種鮮花的需求量在束以上的概率.
參考公式及相關(guān)數(shù)據(jù):對于一組數(shù)據(jù),,...,,其回歸直線的斜率和截距的最小二乘估計分別為,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在國家“大眾創(chuàng)業(yè),萬眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對某種產(chǎn)品的研究投入.為了對新研發(fā)的產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格試銷,得到一組檢測數(shù)據(jù)如表所示:
試銷價格(元) | ||||||
產(chǎn)品銷量(件) |
已知變量,具有線性相關(guān)關(guān)系,現(xiàn)有甲、乙、丙三位同學通過計算求得回歸直線方程分別為:甲/span>;乙;丙,其中有且僅有一位同學的計算結(jié)果是正確的.
(1)試判斷誰的計算結(jié)果正確?求回歸方程。
(2)若由線性回歸方程得到的估計數(shù)據(jù)與檢測數(shù)據(jù)的誤差不超過1,則該檢測數(shù)據(jù)是“理想數(shù)據(jù)”.現(xiàn)從檢測數(shù)據(jù)中隨機抽取3個,求“理想數(shù)據(jù)”的個數(shù)的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某闖關(guān)游戲共有兩關(guān),游戲規(guī)則:先闖第一關(guān),當?shù)谝魂P(guān)闖過后,才能進入第二關(guān),兩關(guān)都闖過,則闖關(guān)成功,且每關(guān)各有兩次闖關(guān)機會.已知闖關(guān)者甲第一關(guān)每次闖過的概率均為,第二關(guān)每次闖過的概率均為.假設(shè)他不放棄每次闖關(guān)機會,且每次闖關(guān)互不影響.
(1)求甲恰好闖關(guān)3次才闖關(guān)成功的概率;
(2)記甲闖關(guān)的次數(shù)為,求隨機變量的分布列和期望.。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了研究學生的數(shù)學核心素養(yǎng)與抽象能力(指標)、推理能力(指標)、建模能力(指標)的相關(guān)性,將它們各自量化為1、2、3三個等級,再用綜合指標的值評定學生的數(shù)學核心素養(yǎng),若,則數(shù)學核心素養(yǎng)為一級;若,則數(shù)學核心素養(yǎng)為二級;若,則數(shù)學核心素養(yǎng)為三級,為了了解某校學生的數(shù)學核心素養(yǎng),調(diào)查人員隨機訪問了某校10名學生,得到如下數(shù)據(jù):
學生編號 | ||||||||||
(1)在這10名學生中任取兩人,求這兩人的建模能力指標相同條件下綜合指標值也相同的概率;
(2)在這10名學生中任取三人,其中數(shù)學核心素養(yǎng)等級是一級的學生人數(shù)記為,求隨機變量的分布列及其數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當時,求在點處的切線方程;
(Ⅱ)若,求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若對任意的,在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com