如圖,在四棱錐PABCD中,底面ABCD是正方形,側面PAD⊥底面ABCD,且PA=PD= AD.若E、F分別為PC、BD的中點,求證:

(1)EF∥平面PAD;
(2)EF⊥平面PDC.

(1)見解析(2)見解析

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在棱長為2的正方體ABCD-A1B1C1D1中,E為棱CC1的中點。

(1)求證:BD⊥AE;
(2)求點A到平面BDE的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在三棱錐SABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,過A作AF⊥SB,垂足為F,點E、G分別是棱SA、

SC的中點.求證:
(1)平面EFG∥平面ABC;
(2)BC⊥SA.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,正方形ABCD和三角形ACE所在的平面互相垂直.EF∥BD,AB=EF.求證:

(1)BF∥平面ACE;
(2)BF⊥BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

由平面α外一點P引平面的三條相等的斜線段,斜足分別為A、B、C,O為△ABC的外心,求證:OP⊥α.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知A是△BCD平面外的一點,E,F(xiàn)分別是BC,AD的中點.
 
(1)求證:直線EF與BD是異面直線;
(2)若AC⊥BD,AC=BD,求EF與BD所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知四棱錐PABCD中,底面ABCD為正方形,PD⊥平面ABCD,ECPD,且PD=2EC.

(1)求證:BE∥平面PDA;
(2)若N為線段PB的中點,求證:NE⊥平面PDB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,A,B,C,D為空間四點.在△ABC中,AB=2,AC=BC=.等邊三角形ADB以AB為軸轉動.

(1)當平面ADB⊥平面ABC時,求CD.
(2)當△ADB轉動時,是否總有AB⊥CD?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,AB是圓O的直徑,PA垂直圓O所在的平面,C是圓O上的點.

(1)求證:BC⊥平面PAC;
(2)設QPA的中點,G為△AOC的重心,求證:QG∥平面PBC.

查看答案和解析>>

同步練習冊答案